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a b s t r a c t 

Multi-view learning is an emerging direction in machine learning which considers learning with multi- 

ple views to improve the generalization performance. Multi-view learning is also known as data fusion 

or data integration from multiple feature sets. Since the last survey of multi-view machine learning in 

early 2013, multi-view learning has made great progress and developments in recent years, and is fac- 

ing new challenges. This overview first reviews theoretical underpinnings to understand the properties 

and behaviors of multi-view learning. Then multi-view learning methods are described in terms of three 

classes to offer a neat categorization and organization. For each category, representative algorithms and 

newly proposed algorithms are presented. The main feature of this survey is that we provide comprehen- 

sive introduction for the recent developments of multi-view learning methods on the basis of coherence 

with early methods. We also attempt to identify promising venues and point out some specific challenges 

which can hopefully promote further research in this rapidly developing field. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Multi-view data are very common in real world applications.

any data are often collected from different measuring methods

s particular single-view data cannot comprehensively describe the

nformation of all examples. For instance, for images and videos,

olor information and texture information are two different kinds

f features, which can be regarded as two-view data. In web page

lassification, there are often two views for describing a given

eb page: the text content of the web page itself and the an-

hor text of any web page linking to this web page. It is signifi-

ant to make good use of the information from different views. A

ell designed multi-view learning strategy may bring performance

mprovements. 

Multi-view learning aims to learn one function to model each

iew and jointly optimizes all the functions to improve the gen-

ralization performance. A naive solution for multi-view learning

onsiders concatenating all multiple views into one single view

nd applies single-view learning algorithms directly. However, the

rawbacks of this method are that the over-fitting problem will

rise on comparatively small training sets and the specific statisti-

al property of each view is ignored. A noteworthy merit for multi-

iew learning is that performance on a natural single view could
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till be improved by using manually generated multiple views. It is

mportant and promising to study multi-view learning methods. 

Since our last review paper on multi-view machine learning

1] that was published in early 2013, multi-view learning has made

reat progress and developments. No matter from the perspec-

ive of utilizing data information from multiple views or from

he perspective of the machine learning branches being applied

o, the newly proposed multi-view learning methods show advan-

ages to some extent. These multi-view learning methods may in-

pire methodological research and practical applications as well.

herefore, it is necessary to introduce the recent developments of

ulti-view learning, and analyze their characteristics as well as

romising applications. Compared with the previous review paper,

he content and structure in this paper are brand new. First, we

rovide comprehensive introduction for the more recent develop-

ents of multi-view learning methods on the basis of coherence

ith early methods. Further, in order to show a clear structure of

he multi-view learning methods, the multi-view learning methods

re summarized through a new kind of categorization from a rel-

tively high level. In addition, many additional useful datasets and

oftware packages are introduced to offer helpful advice. Finally,

e discuss several latest open problems and challenges which may

rovide promising venues for future research. 

Specifically, in this paper, multi-view learning methods are di-

ided into three major categories: co-training style algorithms,

o-regularization style algorithms and margin-consistency style 

lgorithms. 1) Co-training style algorithms are enlightened by

http://dx.doi.org/10.1016/j.inffus.2017.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.02.007&domain=pdf
mailto:jzhao2011@gmail.com
mailto:shiliangsun@gmail.com
mailto:slsun@cs.ecnu.edu.cn
http://dx.doi.org/10.1016/j.inffus.2017.02.007
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co-training [2] . Co-training is one of the earliest methods for multi-

view learning for which learners are trained alternately on two

distinct views with confident labels for the unlabeled data. For

example, co-EM [3] , co-testing [4] , and robust co-training [5] be-

long to this co-training style algorithm. 2) For co-regularization

style algorithms, the disagreement between the discriminant or

regression functions of two views is regarded as a regularization

term in the objective function. Sparse multi-view SVMs [6] , multi-

view TSVMs [7] , multi-view Laplacian SVMs [8] and multi-view

Laplacian TSVMs [9] are representative algorithms. 3) Besides the

two conventional style algorithms, margin-consistency style algo-

rithms are recently proposed to make use of the latent consis-

tency of classification results from multiple views [10–13] . They

are realized under the framework of maximize entropy discrimi-

nation (MED) [14] . Different from the co-regularization style algo-

rithms which make restrictions on the discriminant or regression

functions from multiple views, margin-consistency style algorithms

model the margin variables of multiple views to be as close as pos-

sible, and constrain that the product of every output variable and

discriminant function should be greater than every margin vari-

able. Particularly, in the margin-consistency style algorithms, the

values of multiple views’ discriminant functions may have large

difference. 

Besides the latest proposed multi-view learning strategies,

some detailed multi-view learning algorithms are successively put

forward for specific machine learning tasks. These algorithms can

be summarized as multi-view transfer learning [15–17] , multi-

view dimensionality reduction [18–20] , multi-view clustering [21–

28] , multi-view discriminant analysis [29,30] , multi-view semi-

supervised learning [8,9] and multi-task multi-view learning [31–

35] . 

This overview aims to review key advancements in the field of

multi-view learning on theoretical progress and the latest method-

ologies, and also point out future directions. The remainder of this

paper is organized as follows. In Section 2 , we introduce theoret-

ical progress on multi-view learning, primarily focusing on PAC-

Bayes bounds of multi-view learning. Section 3 surveys represen-

tative multi-view learning approaches in terms of three strate-

gies of utilizing multi-view data information, and also provides

the corresponding recent application progress. In Section 4 , we de-

scribe widely used multi-view data sets and representative soft-

ware packages which can provide supports for experimental pur-

pose. In Section 5 , we present some challenging problems which

may be helpful for promoting further research of multi-view learn-

ing. Concluding remarks are given in Section 6 . 

2. Theoretical progress on multi-view learning 

In order to understand the characteristics and performance of

multi-view learning approaches, some generalization error analy-

sis was successively provided, which is based on PAC-Bayes the-

ory and Rademacher complexity theory. Here we introduce two

kinds of recently proposed generalization error analysis, PAC-Bayes

bounds and Rademacher complexity based generalization error

bounds. 

2.1. PAC-Bayes Bounds 

Probably approximately correct (PAC) analysis is a basic and

very general method for theoretical analysis in machine learning. It

has been applied in co-training [36,37] . PAC-Bayes analysis is a re-

lated technique for data-dependent theoretical analysis, which of-

ten gives tight generation bounds [38] . Blum and Mitchell [39] pre-

sented the original co-training algorithm for semi-supervised clas-

sification and gave a PAC style analysis for justifying the effec-

tiveness of co-training. They showed that when two prerequisite
ssumptions that (1) each view is sufficient for correct classifica-

ion and (2) the two views of any example are conditionally inde-

endent given the class label are satisfied, PAC learning ability on

emi-supervised learning holds with an initial weakly useful pre-

ictor trained from the labeled data. However, the second assump-

ion of co-training tends to be too rigorous for many practical ap-

lications. Thus several weaker assumptions have been considered

40,41] . The PAC generalization bound for co-training provided by

asgupta et al. [36] shows that the generalization error of a classi-

er from each view is upper bounded by the disagreement rate of

he classifiers from the two views. 

Recently, Sun et al. [42] proposed multiple new PAC-Bayes

ounds for co-regularization style multi-view learning methods,

hich are the first application of PAC-Bayes theory to multi-view

earning. They made generalization error analysis for both super-

ised and semi-supervised multi-view learning methods. 

.1.1. Supervised multi-view PAC-Bayes bounds 

PCA-Bayes analysis for multi-view learning requires making as-

umptions for the distributions of weight parameters. The dis-

ribution on the concatenation of the two weight vectors u 1 

nd u 2 is assumed as their individual product multiplied by a

eight function which measures how well the two weights agree

veragely on all examples. That is, the prior is P ([ u 

� 
1 
, u 

� 
2 

] � ) ∝
 1 (u 1 ) P 2 (u 2 ) V (u 1 , u 2 ) , where P 1 ( u 1 ) and P 1 ( u 2 ) are Gaussian dis-

ributions with zero mean and identity covariance, and V (u 1 , u 2 ) =
xp 

{
− 1 

2 σ 2 E (x 1 , x 2 ) 
(x � 

1 
u 1 − x � 

2 
u 2 ) 

2 
}
. 

To specialize the PAC-Bayes bound for multi-view learning, they

onsidered classifiers of the form c(x ) = sign (u 

� φ(x )) where u =
 u 

� 
1 
, u 

� 
2 

] � is the concatenated weight vector from two views, and

( x ) can be the concatenated x = [ x � 
1 
, x � 

2 
] � itself or a concatena-

ion of maps of x to kernel-induced feature spaces. Note that x 1 
nd x 2 indicate features of one example from the two views, re-

pectively. For simplicity, they use the original features to derive

heir results, though kernel maps can be implicitly employed as

ell. 

According to the setting, the classifier prior is fixed to be 

 (u ) ∝ N (0 , I ) × V (u 1 , u 2 ) , (1)

here function V ( u 1 , u 2 ) makes the prior place a large probabil-

ty mass on parameters with which the classifiers from two views

gree well on all examples averagely. The posterior is chosen to be

f the form 

(u ) = N (μw , I ) , (2)

here ‖ w ‖ = 1 . Define ˜ x = [ x � 
1 
, −x � 

2 
] � . The following is obtained 

 (u ) ∝ N (0 , I ) × V (u 1 , u 2 ) 

∝ exp 

{
−1 

2 

u 

� 
(

I + 

E ( ̃  x ̃  x 

� ) 
σ 2 

)
u 

}
. 

hat is, P (u ) = N (0 , �) with � = 

(
I + 

E ( ̃ x ̃ x � ) 
σ 2 

)−1 

. 

Suppose dim (u ) = d. Given the above prior and posterior, their

ivergence is characterized by the following lemma. 

emma 1. [42] 

L (Q(u ) ‖ P (u )) = 

1 

2 

(
− ln 

(∣∣∣I + 

E ( ̃  x ̃  x 

� ) 
σ 2 

∣∣∣
)

+ 

1 

σ 2 
E [ ̃  x 

� ˜ x + μ2 (w 

� ˜ x ) 2 ] + μ2 
)
. (3)

In addition, they provided and proved two inequalities on the

nvolved logarithmic determinant function, which are very impor-

ant for the subsequent multi-view PAC-Bayes bounds. 
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emma 2. 

ln 

∣∣∣I + 

E ( ̃  x ̃  x 

� ) 
σ 2 

∣∣∣ ≤ −d ln E 

[ ∣∣∣I + 

˜ x ̃  x 

� 

σ 2 

∣∣∣1 /d ] 
, (4) 

ln 

∣∣∣I + 

E ( ̃  x ̃  x 

� ) 
σ 2 

∣∣∣ ≤ −E ln 

∣∣∣I + 

˜ x ̃  x 

� 

σ 2 

∣∣∣. (5) 

Denote R = sup ˜ x ‖ ̃ x ‖ . From inequality (4) , a new multi-view

AC-Bayes bound is derived as follows. 

heorem 1 (Multi-view PAC-Bayes bound 1) . Consider a classifier

rior given in (1) and a classifier posterior given in (2) . For any data

istribution D, for any δ ∈ (0, 1], with probability at least 1 − δ over

 ∼ D 

m , the following inequality holds 

 w , μ : KL + ( ̂  E Q,S || E Q, D ) 

≤
− d 

2 
ln 

[ 
f m 

− ( d 
√ 

(R/σ ) 2 + 1 − 1) 
√ 

1 
2 m 

ln 

3 
δ

] 
+ 

+ 

H m 
2 σ 2 + 

(1+ μ2 ) R 2 

2 σ 2 

√
m 

where 

f m 

= 

1 

m 

m ∑ 

i =1 

∣∣∣I + 

˜ x i ̃  x 

� 
i 

σ 2 

∣∣∣1 /d 

, 

 m 

= 

1 

m 

m ∑ 

i =1 

[ ̃  x 

� 
i ˜ x i + μ2 (w 

� ˜ x i ) 
2 ] , 

nd ‖ w ‖ = 1 . 

From the bound formulation, we see that if (w 

� ˜ x i ) 
2 is small,

hat is, if the outputs of the two views tend to agree, the bound

ill be tight. Note that, although the formulation of f m 

involves

he outer product of feature vectors, it can actually be represented

y the inner product, which is obvious through the following de-

erminant equality [42] , 

I + 

˜ x i ̃  x 

� 
i 

σ 2 

∣∣∣ = 

˜ x 

� 
i 

˜ x i 

σ 2 
+ 1 . (6)

he matrix ˜ x i ̃  x � 
i 

has rank 1 and has only one nonzero eigenvalue. 

Then inequality (5) instead of (4) was used to derive a d -

ndependent bound (see Theorem 2 below), which is independent

f the dimensionality of the feature representation space. 

heorem 2 (Multi-view PAC-Bayes bound 2) . Consider a classifier

rior given in (1) and a classifier posterior given in (2) . For any data

istribution D, for any δ ∈ (0, 1], with probability at least 1 − δ over

 ∼ D 

m , the following inequality holds 

 w , μ : KL + ( ̂  E Q,S || E Q, D ) 

≤
˜ f / 2 + 

1 
2 

(
(1+ μ2 ) R 2 

σ 2 + ln (1 + 

R 2 

σ 2 ) 
)√ 

1 
2 m 

ln 

2 
δ

+ 

μ2 

2 
+ ln 

(
m +1 
δ/ 2 

)
m 

,

here 

˜ f = 

1 

m 

m ∑ 

i =1 

(
1 

σ 2 
[ ̃  x 

� 
i ˜ x i + μ2 (w 

� ˜ x i ) 
2 ] − ln 

∣∣∣I + 

˜ x i ̃  x 

� 
i 

σ 2 

∣∣∣), 

nd ‖ w ‖ = 1 . 

Since this bound is independent of d and the term 

∣∣∣I + 

˜ x i ̃ x � 
i 

σ 2 

∣∣∣ in-

olving the outer product can be represented by the inner product

hrough (6) , this bound can be employed when the dimension of

he kernelized feature space goes to infinity. 

By changing the prior distribution of u , and applying the two

nequality (4) and (5) respectively, another four PAC-Bayes bounds

an be deduced [42] . 
ln 

3 
δ

+ 

μ2 

2 
+ ln 

(
m +1 
δ/ 3 

)
, 

.1.2. Semi-supervised multi-view PAC-Bayes bounds 

PAC-Bayes analysis was considered for semi-supervised multi-

iew learning, where besides the m labeled examples, u unla-

eled examples U = { ̃  X } m + u 
j= m +1 

are further provided. In this case, the

eight function V ( u 1 , u 2 ) was replaced with 

˜ V (u 1 , u 2 ) , which has

he form 

˜ V (u 1 , u 2 ) = exp 

{
− 1 

2 σ 2 u 

� 
E U ( ̃ x ̃ x � ) u 

}
, where E U means

he empirical average over the unlabeled set U . There are two

inds of semi-supervised multi-view PAC-Bayes bounds by using

he noninformative prior and informative prior. If the prior distri-

ution of u is assumed as P (u ) ∝ N (0 , I ) × V (u 1 , u 2 ) , the semi-

upervised multi-view PAC-Bayes bound is derived as Theorem

1 in Sun et al. [42] . If the prior distribution of u is assumed

s P (u ) ∝ N (ηW p , I ) × V (u 1 , u 2 ) , where W p = E (x ,y ) ∼D [ y x ] with

 = [ x � 
1 
, x � 

2 
] � , the semi-supervised multi-view PAC-Bayes bound is

erived as Theorem 12 in Sun et al. [42] . 

.2. Rademacher complexity based generalization error bounds 

Another attempt to analyze the generalization of two-view

earning was made using Rademacher complexity [43] . Farquhar

t al. [44] analyzed the generalization error bounds of SVM-2K,

hich rely on the empirical estimate for Rademacher complexity.

zedmak and Shawe-Taylor [45] characterized the generalization

erformance of its extended version for semi-supervised learning.

osenberg and Bartlett [46] gave the empirical Rademacher com-

lexity of co-regularized least squares. Then Sindhwani and Rosen-

erg [47] recovered the generalization bound [47] . Sun and Shawe-

aylor [6] proposed a sparse semi-supervised learning framework

sing Fenchel–Legendre conjugates and instantiated an algorithm

amed sparse multi-view SVMs. They gave the generalization er-

or bound of the sparse multi-view SVMs. Sun [8] also presented

ulti-view Laplacian SVMs whose generalization error analysis and

mpirical Rademacher complexity were provided as well [8] . 

Recently, Xu et al. [48] proposed a multi-view intact space

earning algorithm, which integrates the encoded complementary

nformation in multiple views to discover a latent intact repre-

entation of data. Simultaneously, they proposed a new defini-

ion of multi-view stability and derived the generalization error

ound based on the multi-view stability and Rademacher com-

lexity, which shows that the complementarity between multiple

iews is beneficial for the stability and generalization. 

. Multi-view learning methods 

From the perspectives of strategies of utilizing multi-view

ata information, multi-view learning methods can be divided

nto three major categories: co-training style algorithms, co-

egularization style algorithms and margin-consistency style algo-

ithms. 

Co-training style algorithms are a kind of mechanisms of multi-

iew learning which override on single-view learning algorithms.

hey are mostly used for solving semi-supervised problems. Co-

raining style algorithms make use of multiple views of data to

teratively learning multiple classifiers that can provide predicted

abels for the unlabeled data for each other. Co-regularization

tyle algorithms often add regularization terms of discriminant

r regression function onto the objective function. The regular-

zation terms constrain that the prediction results from multiple
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Table 1 

The outline of multi-view learning methods. 

Category Representatives Applications 

co-training co-training [2,5] multi-view semi-supervised 

learning multi-view transfer 

learning, 

co-EM [3] 

co-testing [4] 

co-clustering [15] 

co-regularization CCA [49] multi-view dimension 

reduction multi-view 

clustering multi-view 

supervised learning 

multi-view semi-supervised 

learning 

DCCA [50] 

MvDA [51] 

MULDA [30] 

SVM-2K [44] 

MvTSVM [7] 

margin 

consistency 

MVMED [10] multi-view classification 

SMVMED [12] 

MED-2C [13] 
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i  
views should be close. Margin-consistency style algorithms model

the margin variables from multiple views to be consistent in the

framework of MED [14] . Instead of making restrictions directly on

the discriminant or regression function, margin-consistency style

algorithms constrain that the product of every output variable and

discriminant function should be greater than every margin vari-

able. In margin-consistency style algorithms, the values of multiple

views’ discriminant functions may have large difference. 

We first show the outline of multi-view learning methods in

Table 1 in terms of representative algorithms and applications

to machine learning problems corresponding to each category.

Then we will introduce the three categories of multi-view learning

methods and the progress on multi-view machine learning appli-

cations in detail in the following subsections. We hope that the de-

scriptions of the multi-view learning methods under different cate-

gories and applications under different machine learning problems

could provide some inspirations for multi-view researchers. 

3.1. Co-training style algorithms 

Co-training was originally proposed for the problem of semi-

supervised learning, in which there is access to labeled as well

as unlabeled data. It considers a setting in which each exam-

ple can be partitioned into two distinct views, and makes two

main assumptions for success: sufficiency and conditional indepen-

dence. In order to deal with more kinds of multi-view learning

tasks, the idea of co-training was employed and some extended

co-training style algorithms are developed such as co-EM [3] , co-

testing [4] and co-clustering [15] . In addition, some interesting and

valuable analysis for co-training style algorithms was made, which

promotes the developments of co-training. 

Wang and Zhou [52] showed that co-training can work with-

out two views when the two learners have large difference, and

co-training could not improve the performance further after many

learning rounds. A series of deep analysis revealed some interest-

ing properties of co-training, for example on the large-diversity

of classifiers [52] , label propagation over two views [53] and co-

training with insufficient views [54] . They further provided a suf-

ficient and necessary condition for co-training to succeed with

proper assumptions. Nigam and Ghani [3] showed that co-training

on multiple views manually generated by random splits of fea-

tures can result in performance improvements even when no nat-

ural multiple views are available. They also proposed co-EM al-

gorithm which extends the original bootstrap method of the co-

training algorithm to operate simultaneously on all unlabeled sam-

ples in an iterative batch mode [3] . Brefeld and Scheffer [55] suc-

cessfully developed a co-EM version of support vector machines.

Muslea et al. [56] introduced co-testing, which is a novel approach

to combine active learning with multiple views. Then they com-
ined co-testing with co-EM, and derived a novel method called

o-EMT [57] . 

The original co-training algorithm cannot examine the reliabil-

ty of labels obtained by the classifiers from each view. Even very

ew inaccurately labeled examples can deteriorate the performance

f learned classifiers to a large extent. To overcome this drawback,

un and Jin [58] proposed robust co-training, which integrates CCA

o inspect the predictions of co-training on the unlabeled training

ata . Yu et al. [59] proposed an improved version of co-training

alled Bayesian co-training with the Bayesian undirected graphical

odel. The model can query < example, view > pairs to improve

he learning performance. Zhao et al. [60] presented an algorithm

hat combines the simplicity of k-means clustering and linear dis-

riminant analysis within a co-training scheme, which exploits la-

els learned automatically in one view to learn discriminative sub-

paces in another. 

Multi-view Transfer Learning Based on Co-training Trans-

er learning is an emerging and active topic which learns a new

ask through the transfer of knowledge from a related task that

as already been learned. Chen et al. [61] presented a vari-

nt of co-training for domain adaptation which connects source

nd target domains whose distributions can differ substantially.

u and Sun [62,63] proposed an algorithm involving a vari-

nt of EMV-Adaboost for multi-view transfer learning and fur-

her extended it to multiple source case. Zhang et al. [64] pro-

osed multi-view transfer learning with a large margin approach.

n one hand, labeled data from the source domain are effec-

ively utilized to construct a large margin classifier. On the other

and, data from both domains are employed to impose consis-

encies among multiple views. Yang and Gao [15] proposed an

nformation-theoretical multi-view adaptation model that com-

ines the paradigms of multi-view learning and domain adaptation

ased on a co-clustering framework, and aims to transfer knowl-

dge across domains in multiple subspaces of features complemen-

arily. They incorporated multiple views of data in a perceptive

ransfer learning framework and proposed a multi-view discrim-

nant transfer learning approach for domain adaptation [16] . Tan

t al. [17] proposed a novel algorithm to leverage knowledge from

ifferent views and sources collaboratively, by assuring different

iews from different sources to complement each other through

 co-training style framework. 

.2. Co-regularization style algorithms 

Co-regularization style algorithms usually add regularization

erms to the objective function to make sure that data from multi-

le views are consistent. The regularization styles can be summa-

ized as three different ways. (1) One is to construct linear or non-

inear transformations from the original space in different views to

 new space, and constrain that the multiple transformed feature

ets should be as close as possible. Typical methods for this kind

f regularization are CCA based algorithms. (2) Another one is to

pply the label information to the space transformation based al-

orithms, and add constrains for intra-class and inter-class charac-

eristics. These kinds of algorithms are mostly based on discrimina-

ive CCA and multi-view linear discriminate analysis (LDA). (3) The

hird one is to combine the data and label information by use of

lassifiers or regressors, and regularize that the outcomes got by

lassifiers or regressors from multiple views should be as consis-

ent as possible. Multi-view SVMs and multi-view twin SVMs are

ecently proposed and representative algorithms for this kind of

egularization. 

.2.1. CCA based algorithms 

One representative co-regularization style algorithm is canon-

cal correlation analysis (CCA) [49,65,66] . CCA is an approach to
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orrelating linear relationships between two-view feature sets. It

eeks linear transformations each for one view such that the corre-

ation between these transformed feature sets is maximized in the

ommon subspace while regularizing the self covariance of each

ransformed feature sets to be small enough. The aim of CCA is

o find two projection directions w x and w y corresponding to each

iew, and maximize the following linear correlation coefficient 

cov 
(
w 

T 
x X, w 

T 
y Y 

)
√ 

v ar 
(
w 

T 
x X 

)
v ar 

(
w 

T 
y Y 

) = 

w 

T 
x C xy w y √ (

w 

T 
x C xx w x 

)(
w 

T 
y C yy w y 

) , (7) 

here the covariance matrices C xy , C xx and C yy are calculated as

 xy = 

1 
n XY T , C xx = 

1 
n XX T , C yy = 

1 
n Y Y 

T . The constant 1 
n can be can-

eled out when calculating the correlation coefficient. Since w x , w y 

re scale-independent, the objective expressed by (7) is equivalent

o the following optimization problem 

max w x ,w y 
w 

T 
x C xy w y 

s.t. w 

T 
x C xx w x = 1 , w 

T 
y C yy w y = 1 . 

(8) 

he optimal solution for the projection directions w x and w y can

e obtained through solving a generalized eigenvalue problem as

0 C xy 

C yx 0 

][
w x 

w y 

]
= λ

[
C xx 0 

0 C yy 

][
w x 

w y 

]
. (9) 

ere, 0 represents the zero vector with an appropriate number of

ero elements. 

It’s worth mentioning that maximizing correlation as in (8) cor-

esponds to minimizing the empirical expectation of the pattern

unction g w x ,w y (X, Y ) = || w x X − w y Y || 2 subject to the same condi-

ions [67] . Seen from this pattern function which constrains that

he value of two views’ projection functions should be as identical

s possible, CCA is actually a kind of co-regularization style algo-

ithms. 

Kernel canonical correlation analysis (KCCA) [68–71] is an ker-

el extension of CCA for pursuing maximally correlated nonlinear

rojections. The desired projection vectors w 

φ
x and w 

φ
y can be ex-

ressed as a linear combination of all training examples in the fea-

ure space, and there exist coefficient vectors a = [ a 1 , . . . , a n ] � and

 = [ b 1 , . . . , b n ] � , such that 

 

φ
x = 

n ∑ 

i =1 

a i φx (x i ) = φ(X ) a, w 

φ
y = 

n ∑ 

i =1 

b i φy (y i ) = φ(Y ) b. (10)

ubstituting (10) into (8) and using the definition of the kernel ma-

rix, one can formulate the optimization problem of KCCA as 

max a,b a T K x K y b 

s.t. a T K x K x a = 1 , b T K y K y b = 1 , 
(11) 

hich can be solved in a similar way like CCA. 

Bayesian CCA, Deep CCA and Tensor CCA CCA has attracted a

ot of researchers in past years [72,73] . CCA has been extended

o sparse CCA [74,75] and has been widely used for multi-view

lassification [76] , clustering [77] , regression [78] , etc. Bach and

ordan [79] gave a probabilistic interpretation of CCA, such that

he maximum likelihood estimates of the model parameters can

e derived from CCA. Given this probabilistic interpretation, CCA

as been extended to Bayesian CCA in fully Bayesian treatment re-

ently [80] . It can avoid overfitting by adding regularization [81] . In

ddition, some extensions of probabilistic CCA models have been

rovided as non-Gaussian CCA, discrete CCA and mixed CCA which

ere adapted to applications where one or both of the data-views

re either counts [82] . Deep canonical correlation analysis (DCCA)

83] is a kind of method to learn complex nonlinear transforma-

ions of two views of data such that the resulting representa-

ions are highly linearly correlated. Unlike KCCA, DCCA does not
equire an inner product, and has the advantages of a parametric

ethod: training time scales well with the data size and the train-

ng data need not be referenced when computing the representa-

ions of unseen instances. CCA can be extended to multi-view CCA

84] by maximizing the sum of pairwise correlations between dif-

erent views. However, the main drawback of this strategy is that

nly correlation information between pairs of features is explored,

hile high-order statistics are ignored. Luo et al. [85] develop ten-

or CCA (TCCA) to generalize CCA to handle any number of views

n a direct and yet natural way. In particular, TCCA can directly

aximize the correlation between the canonical variables of all

iews, and this is achieved by analyzing the high-order covariance

ensor over the data from all views [86] . 

Multi-view Dimension Reduction As an important branch of

ulti-view unsupervised learning, multi-view dimension reduction 

eeks a low-dimensional common subspace to represent multi-

iew data [87] . For example, CCA is a typical multi-view dimen-

ionality reduction method. Some new multi-view dimension re-

uction methods were developed by involving CCA or other space

ransformation methods. Chen et al. [88] proposed a multi-view

atent subspace Markov network to accomplish multi-view dimen-

ion reduction. This network fulfills a weak conditional indepen-

ence assumption that multi-view observations and response vari-

bles are conditionally independent given a set of latent variables.

ing and Fu [18] proposed a low-rank common subspace for multi-

iew data analysis, which seeks a common low-rank linear projec-

ion to mitigate the semantic gap among different views. The low-

ank common projection is able to capture compatible intrinsic in-

ormation across different views and also well-aligns the within-

lass samples from different views. As a result, it offers effective

ethods for robust subspace learning. White et al. [89] and Guo

19] provided a convex formulation of multi-view subspace learn-

ng. The new formulation of multi-view subspace learning allows a

lobal solution, and can be derived with efficient optimization al-

orithms. More recently, a Bayesian multi-view dimensionality re-

uction method was proposed, where data points from different

iews are projected into a unified subspace without the restriction

f matching data examples from these views [20] . Regularization

or projection functions from different views was also employed to

chieve multi-view denoising [90] . 

Multi-view Clustering Multi-view clustering, which aims to ob-

ain a partition of the data in multiple views that often pro-

ide complementary information to each other, has received con-

iderable attention in the past years. Most work was designed

ased on space transformation methods [77,91–95] . Recently, Liu

t al. [96] presented a novel tensor-based framework for inte-

rating heterogeneous multi-view data in the context of spectral

lustering. Zhang et al. [21] proposed low-rank tensor constrained

ulti-view subspace clustering which regards the subspace rep-

esentation matrices of different views as a tensor and the ten-

or is equipped with a low-rank constraint. The multi-linear re-

ationship among multi-view data is taken into account through

heir tensor-based strategy. In order to deal with large-scale data

lustering problems, a new robust large-scale multi-view cluster-

ng method [22] was proposed to integrate multiple representa-

ions of large scale data. Li et al. [23] presented partial multi-view

lustering in the case that every view suffers from the missing

f some data and results in many partial examples. Wang et al.

97] proposed a multi-view learning model to integrate all features

nd learn the weight for every feature with respect to each clus-

er individually via new joint structured sparsity-inducing norms.

ome multi-view clustering algorithms based on the nonnegative

atrix factorization were proposed [24,25,98] . Xia et al. [26] pro-

osed a novel Markov chain method for robust multi-view spectral

lustering, which combines the transition probability matrices con-

tructed from each view into a shared transition probability ma-
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trix via low-rank and sparse decomposition. Based on max-product

belief propagation, Zhang et al. [27] proposed a novel multi-view

clustering algorithm termed multi-view affinity propagation. Di-

versity induced multi-view subspace clustering [28] was proposed

to explore the complementary information. Some researchers have

proposed multi-view clustering ensemble learning that combines

different ensemble techniques for multi-view clustering [99–101] .

Chikhi [102] proposed a multi-view normalized cut approach with

spectral partitioning and local refinement. 

3.2.2. Discriminative CCA and multi-view LDA based algorithms 

Although CCA can obtain a common space for multiple views,

it does not take label information into account. To learn a dis-

criminant common space for two views, correlation discriminant

analysis and discriminative canonical correlation analysis (DCCA)

[50,103,104] were proposed to extend CCA by maximizing the dif-

ference of within-class and between-class variations across two

views. Moreover, as extensions from LDA, multi-view Fisher dis-

criminant analysis for binary classification problem [105,106] and

generalized multi-view linear discriminant analysis (GMvDA) for

multi-class classification from multiple views [107] were proposed.

While GMvDA requires setting hyper-parameters for regularization,

multi-view discriminant analysis (MvDA) [51] provides more di-

rect derivation from LDA for multiple view projection matrices

without any hyper-parameter. In addition, MvDA simultaneous ob-

tains a concatenation of projection matrices from multiple views

by solving a single generalized eigenvalue problem. Makihara et al.

[29] described a multi-view discriminant analysis with tensor rep-

resentation and applied it to cross-view gait recognition. The large-

margin idea was also integrated into the Gaussian processes to dis-

cover the latent subspace shared by multiple views [108,109] . 

MULDA Uncorrelated LDA (ULDA) is an extension of LDA by

adding some constraints into the optimization objective of LDA, so

that the feature vectors extracted by ULDA could contain minimum

redundancy. Multi-view uncorrelated linear discriminant analysis

(MULDA) [30] was recently proposed by imposing two more con-

straints in each view, which extracts uncorrelated features in each

view and computes transformations of each view to project data

into a common subspace. Here we briefly introduce MULDA. Let

( w x 1 , w y 1 ) represent the vector pair solved by the existing multi-

view LDA method which corresponds to the maximum eigenvalue.

Suppose the vector pairs ( w xj , w yj ) with j = 1 , 2 , . . . , r − 1 of the

two-view data are obtained. MULDA aims to find the r th discrim-

inant vector pair ( w xr , w yr ) of datasets X and Y with the following

conjugated orthogonality constraints 

w 

T 
xr S t x w x j = w 

T 
yr S t y w y j = 0 ( j = 1 , 2 , . . . , r − 1) , (12)

where S t x and S t y represent the total scatter matrix for two views.

With S b x and S b y denoting the between-class scatter matrix, the

optimization problem of MULDA can be formulated as 

max w xr ,w yr 
w 

T 
xr S b x w xr + w 

T 
yr S b y w yr + 2 γ w 

T 
xr C xy w yr 

s.t. w 

T 
xr S t x w xr + σw 

T 
yr S t y w yr = 1 

w 

T 
xr S t x w x j = w 

T 
yr S t y w y j = 0 

( j = 1 , 2 , . . . , r − 1) , 

(13)

where w xr and w yr represent the r th discriminant vectors of

datasets X and Y , respectively. Through optimizing (13) , we obtain

d feature vectors for each view: z xi = w 

T 
xi 

X, z yi = w 

T 
yi 

Y, i = 1 , . . . , d. 

3.2.3. Multi-view SVMs and multi-view twin SVMs 

Many multi-view supervised learning methods build upon

SVMs. SVM-2K [44] is a representative multi-view algorithm,

which combines the two views by introducing the constraint of

similarity between two one-dimensional projections identifying
wo distinct SVMs from the two feature spaces. Assuming that the

wo view data are expressed through two feature projections, i.e.,

1 with corresponding kernel κ1 and φ2 with corresponding ker-

el κ2 , the constraint is expressed as an ε-insensitive 1-norm reg-

larization using slack variables ηi , 

 < w 1 , φ1 (x i ) > + b 1 − < w 2 , φ2 (x i ) > −b 2 | ≤ ηi + ε, (14)

here w 1 , b 1 , ( w 2 , b 2 ) are the weight and threshold of the first

second) view’s SVM. 

Recently, a new method called multi-view twin support vec-

or machines (MvTSVMs) was proposed [7] . On one view, positive

xamples are represented by A 

′ 
1 

and negative examples are repre-

ented by B 
′ 
1 . On the other view, positive examples are represented

y A 

′ 
2 and negative examples are represented by B 

′ 
2 . For simplicity,

uppose that all e are vectors of ones of appropriate dimensions

nd 

 1 = (A 

′ 
1 , e ) , B 1 = (B 

′ 
1 , e ) , A 2 = (A 

′ 
2 , e ) , B 2 = (B 

′ 
2 , e ) , 

 1 = 

(
w 1 

b 1 

)
, v 2 = 

(
w 2 

b 2 

)
, u 1 = 

(
w 3 

b 3 

)
, u 2 = 

(
w 4 

b 4 

)
, 

(15)

here ( w 1 , b 1 ) and ( w 2 , b 2 ) are classifier parameters of +1 class,

nd ( w 3 , b 3 ) and ( w 4 , b 4 ) are classifier parameters of −1 class. The

ptimization problems for MvTSVMs are written as 

min 

v 1 , v 2 ,q 1 ,q 2 ,η

1 

2 

‖ A 1 v 1 ‖ 

2 + 

1 

2 

‖ A 2 v 2 ‖ 

2 + c 1 e 
� 
2 q 1 + c 2 e 

� 
2 q 2 + De � 1 η

s.t. | A 1 v 1 − A 2 v 2 | � η, 

− B 1 v 1 + q 1 � e 2 , 

− B 2 v 2 + q 2 � e 2 , 

q 1 � 0 , q 2 � 0 , 

η � 0 , 

(16)

min 

u 1 ,u 2 ,k 1 ,k 2 ,ζ

1 

2 

‖ B 1 u 1 ‖ 

2 + 

1 

2 

‖ B 2 u 2 ‖ 

2 + d 1 e 
� 
1 k 1 + d 2 e 

� 
1 k 2 + He � 2 ζ

s.t. | B 1 u 1 − B 2 u 2 | � ζ , 

− A 1 u 1 + k 1 � e 1 , 

− A 2 v 2 + k 2 � e 1 , 

k 1 � 0 , k 2 � 0 , 

ζ � 0 , 

(17)

here e 1 and e 2 are vectors of ones of appropriate dimensions, v 1 ,

 2 , u 1 , u 2 are classifier parameters, c 1 , c 2 , d 1 , d 2 , D, H are non-

egative parameters, and q 1 , q 2 , η, ζ , k 1 , k 2 are slack vectors of

ppropriate dimensions. 

Multi-view Semi-supervised Learning Semi-supervised learn-

ng, which learns from few labeled examples and a large number

f unlabeled examples, is an active research direction. Its preva-

ence is mainly motivated by the need to reduce the expensive

r time-consuming label acquisition process. Szedmak and Shawe-

aylor [45] exploited unlabeled data via multi-view learning ef-

ectively [45] . Representative multi-view semi-supervised learn-

ng methods include co-training [39] , co-EM [3] , multi-view se-

uential learning [110] , Bayesian co-training [59] , multi-view point

loud regularization [111] , sparse multi-view SVMs [6] , two-view

ransductive support vector machines [112] , robust co-training [5] ,
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ulti-view vector-valued manifold regularization [113] . The recent

ulti-view Laplacian SVMs [8] and multi-view Laplacian TSVMs

9] integrate the multi-view regularization with manifold regular-

zation and bring inspiring results. Here we introduce the multi-

iew Laplacian TSVMs. On view one, positive examples are rep-

esented by A 

′ 
1 

and negative examples are represented by B 
′ 
1 
. On

iew two, positive examples are represented by A 

′ 
2 and negative

xamples are represented by B 
′ 
2 
. The optimization problems of

ulti-view Laplacian TSVMs can be written as 

min 

w 1 ,w 2 ,b 1 ,b 2 ,q 1 ,q 2 ,η

1 

2 

‖ A 

′ 
1 w 1 + e 1 b 1 ‖ 

2 + 

1 

2 

‖ A 

′ 
2 w 2 + e 1 b 2 ‖ 

2 

+ c 1 e 
� 
2 q 1 + c 2 e 

� 
2 q 2 

+ 

1 

2 

c 3 (‖ w 1 ‖ 

2 + b 2 1 + ‖ w 2 ‖ 

2 + b 2 2 ) 

+ 

1 

2 

c 4 [(w 

� 
1 M 

′ � 
1 + e � b 1 ) L 1 (M 

′ 
1 w 1 + eb 1 ) 

+ (w 

� 
2 M 

′ � 
2 +e � b 2 ) L 2 (M 

′ 
2 w 2 + eb 2 )] + De � 1 η

s.t. | A 

′ 
1 w 1 + e 1 b 1 − A 

′ 
2 w 2 − e 1 b 2 | � η, 

− B 

′ 
1 w 1 − e 2 b 1 + q 1 � e 2 , 

− B 

′ 
2 w 2 − e 2 b 2 + q 2 � e 2 , 

q 1 � 0 , q 2 � 0 

η � 0 , 

(18) 

min 

w 3 ,w 4 ,b 3 ,b 4 ,q 3 ,q 4 ,ζ

1 

2 

‖ B 

′ 
1 w 3 + e 2 b 3 ‖ 

2 + 

1 

2 

‖ B 

′ 
2 w 4 + e 2 b 4 ‖ 

2 

+ c 1 e 
� 
1 q 3 + c 2 e 

� 
1 q 4 

+ 

1 

2 

c 3 (‖ w 3 ‖ 

2 + b 2 3 + ‖ w 4 ‖ 

2 + b 2 4 ) 

+ 

1 

2 

c 4 [(w 

� 
3 M 

′ � 
1 + e � b 3 ) L 1 (M 

′ 
1 w 3 + eb 3 ) 

+ (w 

� 
4 M 

′ � 
2 + e � b 4 ) L 2 (M 

′ 
2 w 4 + eb 4 )] + He � 2 ζ

s.t. | B 

′ 
1 w 3 + e 2 b 3 − B 

′ 
2 w 4 − e 2 b 4 | � ζ , 

− A 

′ 
1 w 3 − e 1 b 3 + q 3 � e 1 , 

− A 

′ 
2 w 4 − e 1 b 4 + q 4 � e 1 , 

q 3 � 0 , q 4 � 0 

ζ � 0 . 

(19) 

 

′ 
1 

includes all of labeled data and unlabeled data from view 1. M 

′ 
2 

ncludes all of labeled data and unlabeled data from view 2. L 1 is

he graph Laplacian of view 1 and L 2 is the graph Laplacian of view

. e 1 , e 2 and e are vectors of ones of appropriate dimensions. w 1 ,

 1 , w 2 , b 2 , w 3 , b 3 , w 4 , b 4 are classifier parameters. c 1 , c 2 , c 3 and

 4 are nonnegative parameters. q 1 , q 2 , q 3 , q 4 , η and ζ are slack

ectors of appropriate dimensions. 
.3. Margin-consistency style algorithms 

Margin-consistency style algorithms were proposed under the

onsideration of the characteristics of classification in multi-view

ases. Especially for large-margin classifiers, the margins between

he samples and the hyperplanes well depict the relationship be-

ween the models and the data. It is a valid method to utilize con-

istency of multi-view data to regularize that the margins from

wo views are the same or have the same posteriors. The strategy

f using margin consistency was firstly proposed in the framework

f multi-view maximum entropy discrimination (MVMED) [10] .

ome variants such as soft margin consistency based multi-view

ED (SMVMED) [11] and consensus and complementarity based

ED (MED-2C) [13] were also developed and obtained promising

erformance. 

.3.1. MVMED 

Multi-view maximum entropy discrimination (MVMED) 

10] was proposed as an extension of MED to the multi-view

earning setting. It considers a joint distribution p ( �1 , �2 ) over

he view one classifier parameter �1 and view two classifier

arameter �2 . γ is the shared margin variable by two views.

sing the augmented joint distribution p ( �1 , �2 , γ) and the joint

rior distribution p 0 ( �1 , �2 , γ), MVMED can be formulated as

ollows 

in p(�1 , �2 , γ ) KL (p(�1 , �2 , γ ) || p 0 (�1 , �2 , γ )) 

.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∫ 
p(�1 , �2 , γ )[ y t L 1 (X 

1 
t | �1 ) −γt ] d �1 d �2 d γ ≥0 ∫ 

p(�1 , �2 , γ )[ y t L 2 (X 

2 
t | �2 ) −γt ] d �1 d �2 d γ ≥0 

1 ≤ t ≤ N, 

(20) 

here L 1 (X 1 t | �1 ) and L 2 (X 2 t | �2 ) are discriminant functions from

wo views, respectively. 

Chao and Sun [11] also proposed a more flexible MVMED

ramework called alternative MVMED (AMVMED) [11] , which con-

iders two separate distributions p 1 ( �1 ) over �1 and p 2 ( �2 ) over

2 , and balances KL divergences of their augmented distribu-

ions with respect to the corresponding prior distributions p 0 ( · ).

MVMED is formulated as 

in p 1 (�1 , γ ) , p 2 (�2 , γ ) ρKL (p 1 (�1 , γ ) || p 0 (�1 , γ )) 

+ (1 − ρ) KL (p 2 (�2 , γ ) || p 0 (�2 , γ )) 

.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∫ 
p 1 (�1 , γ ) [ y t L 1 (X 

1 
t | �1 ) − γt ] d �1 d γ ≥ 0 ∫ 

p 2 (�2 , γ ) [ y t L 2 (X 

2 
t | �2 ) − γt ] d �2 d γ ≥ 0 ∫ 

p 1 (�1 , γ ) d�1 = 

∫ 
p 2 (�2 , γ ) d�2 

1 ≤ t ≤ N. 

(21) 

.3.2. SMVMED 

Unlike conventional multi-view learning method, MVMED and

MVMED exploits the multiple views in a style called margin con-

istency, that is, to enforce margins from the two views to be iden-

ical. Although they have provided state-of-art multi-view learn-

ng performance, this margin consistency requirement may be too

trong to fulfill in some cases and hinder effective model learn-

ng. It is thus interesting to explore the possibility of relaxing the

equirement. The proposed soft margin consistency based MVMED

SMVMED) has achieved improvements through the relaxing of the

equirement on margin consistency [12] . It assumes two different

osterior distributions, p 1 ( γ) and p 2 ( γ), for margin variables and

nsures that the KL divergence between the two distributions as

mall as possible. Similar to MVMED, the objective optimization
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1 Data are available at http://archive.ics.uci.edu/ml/datasets/Multiple+Features . 
2 Data are available at https://archive.ics.uci.edu/ml/datasets/Internet+ 

Advertisements . 
3 Data are available at http://www.cs.cmu.edu/afs/cs/project/theo-11/www/ 

wwkb/ . 
4 Data are available at https://datahub.io/dataset/multipie . 
5 Data are available at http://mmlab.ie.cuhk.edu.hk/archive/cufsf/ . 
6 Data are available at http://www.cbsr.ia.ac.cn/english/HFB&20Databases.asp . 
7 Data are available at https://archive.ics.uci.edu/ml/datasets/Corel+Image+ 

Features . 
problem can be expressed by 

min p 1 (�1 , γ ) ,p 2 (�2 , γ ) KL (p 1 (�1 ) || p 0 1 (�1 )) + KL (p 2 (�2 ) || p 0 2 (�2 ))

+(1 − α) KL (p 1 (γ ) || p 0 1 (γ )) + (1 − α) KL (p 2 (γ ) || p 0 2 (γ )) 

+ αKL (p 1 (γ ) || p 2 (γ )) + αKL (p 2 (γ ) || p 1 (γ )) 

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∫ 
p 1 (�1 , γ )[ y t L 1 (X 

1 
t | �1 ) −γt ] d �1 d γ ≥0 ∫ 

p 2 (�2 , γ )[ y t L 2 (X 

2 
t | �2 ) −γt ] d �2 d γ ≥0 

1 ≤ t ≤ N. 

(22)

3.3.3. MED-2C 

Another margin-consistency style multi-view learning method

is called consensus and complementarity based MED (MED-2C)

[13] . It is used for multi-view classification, which well utilizes

the two principles consensus and complementarity for multi-view

learning. MED-2C first transforms data from two views into a com-

mon subspace, and makes the transformed data in the new sub-

space identical to respect the consensus principle. Then it aug-

ments the transformed data with their original features to take

into account the complementarity principle. Similar to MVMED,

the objective optimization problem in MED-2C can be formulated

by 

min P,Q min p(�, γ ) KL (p(�, γ ) || p 0 (�, γ )) + β|| P X 1 − QX 2 || 2 F 

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∫ 
p(�, γ )[ y t L ( ̃  X 

1 
t | �) −γt ] d �d γ ≥0 

∫ 
p(�, γ )[ y t L ( ̃  X 

2 
t | �) −γt ] d �d γ ≥0 

1 ≤ t ≤ N, 

(23)

where ˜ X 1 t = [[ P X 1 t ] 
� , X 1 t 

� 
, 0 � ] � and 

˜ X 2 t = [[ QX 2 t ] 
� , 0 � , X 2 t 

� 
] � . MED-

2C is a successful method of combining margin-consistency style

algorithms and co-regularization style algorithms. 

3.4. Progress and applications of combining multi-view learning 

algorithms 

Multi-task Multi-view Learning Multi-task multi-view learn-

ing (MTMV) can learn multiple related tasks with multi-view data.

He and Lawrence [114] proposed a graph-based framework which

takes full advantage of information among multiple tasks and

multiple views. Zhang and Huan [115] proposed a general induc-

tive learning framework for the challenging MTMV problems us-

ing co-regularization and task relationship learning. Yang and He

[31] modeled task relatedness using a normal penalty with sparse

covariances to couple multiple tasks and view relatedness using

matrix Dirichlet process. Two MTMV tracking methods were pro-

posed based on joint sparse representation [32] and based on an

approximate least absolute deviation [33] to exploit the related in-

formation shared between particles and views in order to obtain

improved performance. However, they all tackle the classification

problem. Zhang et al. [34] introduced an MTMV clustering frame-

work which integrates within view-task clustering, multi-view re-

lationship learning and multi-task relationship learning. To facili-

tate information sharing among different tasks on multi-view rep-

resentation, Jin et al. [35] proposed an efficient inductive convex

shared structure learning method for the MTMV problem. In real

world, there exist quite a few applications where the tasks with

several views correspond to different set of class labels. This new

learning scenario is called MTMV learning for heterogeneous tasks

[116] , for which an MTMV discriminant analysis method was pro-

posed to solve this problem. 

Multi-view Ensemble Learning The goal of ensemble learning

is to construct strong learners by combining weak learners to make

very accurate predictions. Many algorithms have been developed

and widely used, such as bagging, boosting, random subspace. Xu
nd Sun [117] extended Adaboost to the multi-view learning sce-

ario and presented the embedded multi-view Adaboost algorithm

EMV-Adaboost). Sun and Zhang [118] extended a multi-view en-

emble learning framework with both multiple views and multi-

le learners to semi-supervised learning [118] and active learn-

ng [119] , respectively. Kumar and Minz [120] [121] proposed su-

ervised feature set partitioning method and optimal feature set

artitioning for performance enhancement of multi-view ensemble

earning. Multi-view ensemble learning has successfully addressed

he issue related to high dimensionality of the data and poem data

lassification using sentiwordnet [122] . 

. Multi-view datasets and software packages 

In order to provide experimental supports for the research on

ulti-view learning, we describe some widely used multi-view

atasets and representative software packages. 

Handwritten Digit Dataset 1 Handwritten digit dataset [7] is

arked as multiple feature sets in the UCI repository. It consists of

eature sets of handwritten numerals (0 ∼ 9) extracted from a col-

ection of Dutch utility maps. Each digit (class) digitized in binary

mages has 200 examples (for a total of 20 0 0 examples) which are

epresented in six feature sets (views) in this dataset. 

Advertisement Dataset 2 Advertisement data [10] consist of

279 examples including 459 ads images (positive examples) and

820 non-ads images (negative examples). The first view describes

he image itself (words in the image’s URL, alt text and caption),

hile the other view contains all other features (words from the

RLs of the pages that contain the image and the image points to).

WebKB Dataset 3 WebKB data [10] consist of 1051 two-view

eb pages collected from computer science department web sites

t four universities: Cornell University, University of Washington,

niversity of Wisconsin, and University of Texas. There are 230

ourse pages and 821 non-course pages. 

Multi-PIE dataset 4 Multi-PIE dataset [123] is employed to eval-

ate face recognition across poses. It contains more than 750,0 0 0

mages of 337 people under various view points. 

CUFSF Dataset 5 CUHK face sketch FERET (CUFSF) dataset

123] is used to evaluate photo-sketch face recognition. It con-

ains 1194 subjects with lighting variations, where examples in this

ataset come from only two views, photo and sketch. 

HFB Dataset 6 Heterogeneous face biometrics (HFB) dataset

123] contains images from 100 subjects, which is used to evalu-

te visual (VIS) image vs. near infrared (NIR) image heterogeneous

ace recognition, where examples are only from two views, visual

mage and near infrared image. 

Corel Images Dataset 7 Corel images dataset [124] consists of 34

ategories, each with 100 images. Attribute vectors represent the

mages in terms of seven views, three color-related views (color

istogram, moment and coherence) and four texture-related views

coarseness and directionality of tamura texture, wavelet and mr-

ar texture). 

Software packages Besides the above valuable datasets, there

re also some representative public software packages which can

ring convenience to multi-view researchers. For co-training style

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/
https://datahub.io/dataset/multipie
http://mmlab.ie.cuhk.edu.hk/archive/cufsf/
http://www.cbsr.ia.ac.cn/english/HFB&20Databases.asp
https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
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lgorithms, there is usually no universal software since they de-

end on specific single-view algorithms. For co-regularization style

lgorithms, CCA is a very simple algorithm always embedded in

opular toolboxes. MvDA 

8 [29] and MULDA 

8 [30] are two dis-

riminant projection methods. SVM-2K 

9 [44] is often regarded

s a baseline algorithm. For margin-consistency style algorithms,

VMED 

10 [10] , SMVMED 

11 [12] , MED-2C 

12 [13] are recently pro-

osed algorithms with public software available. 

. Open problems 

With the needs of practical applications and the developments

f machine learning methods, multi-view learning has got rapid

rogress. In this part, we present several open problems that can

e important for future research and applications of multi-view

earning. 

.1. Large-scale multi-view learning 

Nowadays, a tremendous quantity of data are continually gen-

rated. It has been witnessed that many real applications involve

arge-scale multi-view data. For example, hundreds of hours of

ideos are uploaded to YouTube every minute, which appear in

ultiple modalities or views, namely visual, audio and text views.

 large number of bilingual news are reported every day, with the

escription in each language as a view. It is noteworthy that most

revious multi-view approaches only work on small-size data sets,

hich makes it difficult to handle large-scale multi-view tasks.

herefore, it is a challenge for previous approaches to deal with

he task of learning with large-scale multi-view data. 

There are some multi-view stereo algorithms applied in large-

cale data sets [125,126] . Zhu et al. [127] concentrated on the large-

cale multi-view learning for classification, and proposed the one-

ass multi-view framework which goes through the training data

nly once without storing the entire training examples. The com-

uting in CCA for large data sets can be very slow since it involves

mplementing QR decomposition or singular value decomposition

f large matrices. Lu and Foster [128] introduced large-scale CCA,

n iterative algorithm which can compute CCA fast on large sparse

ata sets [128] . Cai et al. [129] proposed a novel robust large-scale

ulti-view K-means clustering approach, which can be easily par-

llelized and performed on multi-core processors for big visual

ata clustering. Li et al. [22] proposed a novel large-scale multi-

iew spectral clustering approach based on the bipartite graph. Be-

ides large-scale CCA and large-scale multi-view clustering, it is

n urgent need to develop large-scale learning methods for some

ther multi-view learning algorithms. Large-scale MVMED is a po-

ential method to be studied to handle extensive data. 

.2. Multi-view deep learning 

Deep neural networks have recently demonstrated outstanding

erformance in a variety of tasks such as face recognition, object

lassification and object detection. They can significantly outper-

orm other methods for the task of large-scale image classification.

or multi-view learning, there are also some potential of improving

erformance through incorporating multi-view learning algorithms

nd deep learning methods. 

So far, multi-view deep representation learning has two main

trategies [130] . First, Ngiam et al. [131] proposed to extract shared
8 Available at http://www.cst.ecnu.edu.cn/ ∼slsun/software/MUDAcode.rar . 
9 Available at http://www.davidroihardoon.com/code.html . 

10 Available at http://www.cst.ecnu.edu.cn/ ∼slsun/software/MVMEDcode.zip . 
11 Available at http://www.cst.ecnu.edu.cn/ ∼slsun/software/SMVMEDcode.rar . 
12 Available at http://www.cst.ecnu.edu.cn/ ∼slsun/software/MED-2C.rar . 

c  

i  

i  

i  

d  

s

epresentations by reconstructing both views from the view that is

vailable at test time which is regarded as a split autoencoder. Sec-

nd, Andrew et al. [132] proposed a DNN extension of CCA called

eep CCA. For practical application, Zhu et al. [133] proposed a

ulti-view perceptron which is a deep model for learning face

dentity and view representations. Su et al. [134] presented a novel

NN architecture that combines information from multiple views

f a 3D shape into a single and compact shape descriptor. Elho-

einy et al. [135] achieved joint object categorization and pose esti-

ation on multi-view data through employing view-invariant rep-

esentation within CNNs. Elkahky et al. [136] presented a general

ecommendation framework that uses deep learning to match rich

ser features to item features. They also showed how to extend

his framework to combine data from different domains to fur-

her improve the recommendation quality. Although these meth-

ds have realized deep learning in the multi-view learning frame-

ork, there is still a lot of room to develop multi-view deep

earning in terms of methodologies and applications. For example,

ulti-view deep Gaussian processes is a kind of interesting and

hallenging model. 

.3. Model design for more than two views 

Many multi-view learning algorithms were proposed based on

wo views. Actually, multiple view data are very common in prac-

ical applications. Some existing methods for handling multiple

iews are variants of two-view methods. They combine all the

airwise correlations through addition operation in the objective

unction. However, the main drawback of this strategy is that only

orrelation information between pairs of features is explored, and

igh-order statistics are ignored. 

Besides the above simple ways of combining two-view learn-

ng algorithms, some new strategies of handling multi-view cases

ere proposed. Among them, tensor product is an effective tech-

ique used for learning multi-view data. The proposed TCCA [85] is

 valid instance of using tensor product to CCA. How to develop

ore richer multi-view learning algorithms with tensor product

s a problem worth studying. Further, considering the variety of

ulti-view learning methods, it would be interesting to design al-

orithms for more than two views under specific settings. 

.4. Multi-view learning with incomplete views 

The existing multi-view learning algorithms have shown

romising performance in different applications. These algorithms

sually work under the full-view assumption where data from all

iews are required to be observed. In some practical applications,

his full-view setting is likely to be violated. For example, data

rom some certain views may be lost because of sensor faults

r man-made errors. As a result, we can only access multi-view

ata with incomplete views, which brings difficulties for multi-

iew learning. How to well perform multi-view leaning algorithms

n the case of incomplete views or propose new multi-view learn-

ng algorithms with the ability to handle the incomplete-view case

s an interesting research direction. 

By the driving of practical applications where views are in-

omplete, some work on incomplete view learning was developed.

ostly it was designed to handle specific tasks such as multi-view

lustering [137,138] . The main idea of multi-view clustering with

ncomplete view is to reconstruct the data in the missing views us-

ng space transformation and then perform full multi-view learn-

ng methods. Since Bayesian methods can deal with incomplete

ata by involving and integrating out latent variables, it is a fea-

ible method to solve missing view issues in the future. 

http://www.cst.ecnu.edu.cn/~slsun/software/MUDAcode.rar
http://www.davidroihardoon.com/code.html
http://www.cst.ecnu.edu.cn/~slsun/software/MVMEDcode.zip
http://www.cst.ecnu.edu.cn/~slsun/software/SMVMEDcode.rar
http://www.cst.ecnu.edu.cn/~slsun/software/MED-2C.rar
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5.5. Multi-view active learning based on Gaussian processes 

In supervised learning, data with labels are very important for

model training. Especially for multi-view learning, data from differ-

ent views need to be labeled to construct training sets. However,

more labeling data will cost more. Therefore, it is significant to re-

duce the number of labeled data without influencing the multi-

view learning performance. Active learning is an effective method

of selecting less and valuable data points to be labeled. It designs

the classifier with data acquisition by ranking the unlabeled data

to provide suggestions for the next query which has the highest

training utility. Thus, it explores the maximum potential of the

learner on both the labeled and unlabeled data, and the training

set can be maintained as small as possible. This potentially leads

to exploiting the most informative data, while significantly reduc-

ing the cost of data labeling. Combing multi-view learning with ac-

tive learning will promote each other. On one hand, active learning

provides a valid approach to select more valuable data from dif-

ferent views, which may improve the effectiveness and efficiency

of multi-view learning algorithms. On the other hand, multi-view

learning algorithms can help active learning to make better strat-

egy of selecting data points. 

There are already some work on multi-view active learning. For

example, Muslea et al. [139] proposed a multi-view active learn-

ing method called co-testing, which firstly takes advantage of a

few labeled examples to learn a hypothesis in each view, and then

applies the learned hypothesis to all unlabeled examples and de-

tects the set of contention points. Sun and Hardoon [140] pre-

sented an approach for multi-view active learning with extremely

sparse labeled examples, which employs a similarity rule defined

with CCA. These methods apply active learning to some certain

multi-view learning algorithms and work well. They can inspire

people to develop more effective multi-view active learning meth-

ods. Since Gaussian process active learning [141,142] has been pro-

posed and experimentally proved valid, and multi-view Gaussian

processes can be an elegant Bayesian learning method, it is worth-

while to study multi-view active learning algorithms based on

Gaussian processes. 

5.6. Multi-view sequential models under the Bayesian framework 

When considering the type of data expression, sequential data

are very common in the daily life. Sequential data also have multi-

view information. For example, a sequence of human activities can

be expressed as body sensor data or video data. A voice sequence

can be expressed as audio data or throat sensor data. For these

multi-view sequential data, existing multi-view learning methods

will not work. Therefore, developing effective models with the abil-

ity to handle sequential data and utilizing multi-view information

is an open problem. 

Most existing methods for modeling sequential data are based

on the Bayesian framework, such as hidden Markov models

(HMMs) and Gaussian process dynamical systems (GPDSs) [143–

145] . Among these, GPDSs are a kind of valid models with stronger

modeling ability for sequential data. Thus, it is a significant re-

search direction to propose multi-view learning methods for pro-

cessing sequential data based on GPDSs. 

6. Conclusions 

We have made an overview of the developments of multi-view

machine learning methods in terms of theories and methodolo-

gies. From perspectives of theories, we introduced the recent PAC-

Bayesian bounds and Rademacher complexity based generalization

error bounds. From perspectives of methodologies, we tried to pro-

vide a neat categorization and organization where the multi-view
earning approaches are divided into three major categories. For

ach category, we described the representative algorithms and in-

roduced the latest developments. In addition, some popular data

ets were listed to provide convenience for future researchers. Sev-

ral interesting and significant open problems were discussed in

etail, which we think are worth studying. This paper can be use-

ul for readers to further promote theoretical and methodological

esearch and practical applications of multi-view learning. 
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