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SUMMARY

In oncology, the patient state is characterized by awhole spectrum ofmodalities, ranging from radiology, his-
tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in
the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-
tential. Integration of different datamodalities provides opportunities to increase robustness and accuracy of
diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of
discovering novel patterns within and across modalities suitable for explaining differences in patient out-
comes or treatment resistance. The insights gleaned from such models can guide exploration studies and
contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here
we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery.
We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal
data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
INTRODUCTION

Cancer is a highly complex disease involving a cascade of micro-

scopic and macroscopic changes with mechanisms and interac-

tions that are not yet fully understood. Cancer biomarkers provide

insights into the state and course of disease in the form of quan-

titative or qualitative measurements, which consequently guide

patient management. Based on their primary use, biomarkers

canbediagnostic, prognostic or predictive of response and resis-

tance to treatment. Diagnostic markers stand at the first line of

cancer detection and diagnosis, including examples such as

prostate-specific antigen (PSA) values, indications in radiologic

imaging or neoplastic changes in a tissue biopsy. Examples of

predictive markers include microsatellite instability which is

commonly used to predict response to immune-checkpoint-in-

hibitor therapy in colorectal cancer (Marcus et al., 2019), and

KRAS mutations used to indicate resistance to anti-EGFR treat-

ment (VanCutsemet al., 2009). Prognosticmarkers forecast risks

associatedwith clinical outcomes such as survival, recurrence, or

disease progression. Such prognostic markers range from tumor

grade and stage to genomic and transcriptomic assays such as

Oncotype DX and Prosigna (PAM50), often used to estimate

recurrence and survival likelihood (Paik et al., 2004). Despite the

vital role of biomarkers, patients with similar profiles can exhibit
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diverse outcomes, treatment responses (Shergalis et al., 2018),

recurrence rates (Roy et al., 2015), or treatment toxicity (Kennedy

and Salama, 2020), while the underlying reasons for such dichot-

omies largely remain unknown. There is a crucial need to identify

novel and more-specific biomarkers. Modern cancer centers ac-

quire a cornucopia of data over the course of a patient’s diag-

nosis and treatment trajectory, ranging from radiology, histology,

clinical and laboratory tests, to familial and patient histories, with

eachmodality providing additional insights on the patient state. A

holistic framework integrating complementary information and

clinical context from diverse data sources would enable discov-

ery of new, highly-specific biomarkers, paving the path to the

next generation of personalized medicine, as illustrated in Figure

1. An analysis of possible correlation and patterns across diverse

datamodalities can easily become too complex during subjective

analysis, making it an attractive application for AI-methods

(Boehm et al., 2022). The capacity of AI models to leverage

diverse complementary information from multimodal data and

identify predictive features within and across modalities allows

for automated and objective exploration and discovery of novel

biomarkers. Additionally, AI can identify accessible surrogates

for existing, but highly-specialize yet expensive markers, to facil-

itate the spread of advanced targeted therapies and large-scale

population screenings.
er 10, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1095
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Figure 1. AI-driven multimodal data integration
(A and C–F) (A) AImodels can integrate complementary information and clinical context from diverse data sources to providemore accurate outcome predictions.
The clinical insights identified by such models can be further elucidated through (C) interpretability methods and (D) quantitative analysis to guide and accelerate
the discovery of new biomarkers or therapeutic targets (E and F).
(B) AI can reveal novel multimodal interconnections, such as relations between certain mutations and changes in cellular morphology or associations between
radiology findings and histology tumor subtypes or molecular features. Such associations can serve as non-invasive or cost-efficient alternatives to existing
biomarkers to support large-scale patient screening (E and F).
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Historically, the biomarker discovery process has typically

involved the examination of potentially informative qualitative fea-

tures (such as tissue morphology) or quantitative measurements

(such as genomic, transcriptomic alterations) and their associa-

tion with clinical endpoints. For instance, standardized morpho-

logic assesment pipelines such as the the Nottingham grading

system in breast cancer (Rakha et al., 2008) and the Gleason

grading in prostate cancers (Epstein et al., 2016) was determined

through dedicated examination of thousands of histopathology

slides, revealing associations between morphological features

and patient outcome. Although the identification of each new

biomarker represents amilestone in oncology, this process faces

several challenges. Manual assessment is time and resource

intensive, often without the possibility of translating observations

from one cancer model to another. Morphologic cancer assess-

ment is often qualitative, with substantial interrater variability,

which hinders reproducibility and contributes to inconsistent out-

comes in clinical trials. Given the large complexity of medical

data, current biomarkers are mostly unimodal. However, con-

straining the biomarkers to a single modality can significantly

reduce their clinical potential. For instance, glioma patients with

similar genetic or histology profiles can have diverse outcomes

caused by macroscopic factors, such as a tumor location pre-

venting full resection and irradiation or disruption of the blood-

brain barrier, altering the efficacy of drug delivery (Miller, 2002).

Over the past years, artificial intelligence (AI) and in particular

representation learning methods have demonstrated great per-
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formance in many clinically relevant tasks inclusing tasks that

are often not trivial for human observers (Bera et al., 2019; Lu et

al., 2021). AI models are able to integrate complementary infor-

mation and clinical context from diverse data sources to provide

more accurate patient predictions (Figure 1A) (Hosny et al., 2018).

The clinical insights identified by successful models can be

further elucidated through interpretability methods and quantita-

tive analysis to guide and accelerate the discovery of new bio-

markers (Figures 1C and 1D). Similarly, AI models can discover

associations across multiple modalities, such as relations be-

tween certain mutations and specific changes in cellular

morphology (Coudray et al., 2018) or associations between radi-

ology findings and histology-specific tumor subtypes (Ferreira-

Junior et al., 2020; Hyun et al., 2019) or molecular features (Yan

et al., 2021) (Figure 1B). Such associations can identify acces-

sible or non-invasive alternatives for existing biomarkers to sup-

port large-scale population screenings or selection of patients for

clinical trials (Figures 1E and 1F). In this review, we summarize AI

methods and strategies for multimodal data fusion, outline pro-

spective on AI driven exploration through multimodal associa-

tions and interpretability methods, and conclude with directions

for AI adoption in precision oncology.

AI METHODS IN ONCOLOGY

AI methods can be categorized as supervised, weakly super-

vised, or unsupervised. To highlight the concepts specific to



Figure 2. Overview of AI methods
(A) Supervised methods use strong supervision whereby each data point (e.g., feature or image patch) is assigned a label.
(B) Weakly supervised methods allow one to train the model with weak, patient-level labels, avoiding the need for manual annotations.
(C) Unsupervised methods explore patterns, subgroups, and structures in unlabeled data. For comparison, all methods are illustrated on a binary cancer
detection task.
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each category we present all methods in the framework of com-

puter vision as applied to digital pathology (Figure 2).

Supervised methods
Supervised methods map input data to predefined labels (e.g.,

cancer/non-cancer) using annotated data points such as digi-

tized slides with pixel-level annotations, or radiology images

with patient outcome. Examples of fully supervised methods

include hand-crafted and representation learning methods.

Hand-crafted methods

These methods take as input a set of predefined features (e.g.,

cell shape or size) extracted from the data before the training,

not the data themselves. The training is performed with standard

machine-learning (ML) models, such as random forest (RF), sup-

port-vectormachine (SVM), ormultilayer perceptron (MLP) (Bert-

simas and Wiberg, 2020) (Figure 2). Since the feature extraction

is not part of the learning process, the models typically have

simpler architecture, lower computation cost, and may require

less training data than DL models. An additional benefit is a

high level of interpretability, since the predictive features can

be related to the data. On the other hand, the feature extraction

is time consuming and can translate human bias to themodels. A

downside is that manual feature extraction or engineering limits

the models ability to features already known and understood by

humans and prevents the utility and downstream discovery of

new relevent features. Moreover, human perception cannot be

easily captured by a set of mathematical operators, often leading

to simpler features. Since the features are usually tailored to the

specific disease, the models cannot be easily translated to other

tasks or malignancies. Despite the popularity of DL methods, in

many applications the hand-crafted methods are sufficient and

preferred due to their simplicity and ability to learn from smaller

datasets.

Representation learning methods

Representation learning methods such as deep learning (DL) are

capable of learning rich feature representations from the raw

data without the need for manual feature engineering. Here we

focus on convolutional neural networks (CNNs), the most com-

mon DL strategy for image analysis. In CNNs the predictive fea-

tures are not defined, and the model learnins which concepts

and features are useful for explaining relations between inputs

and outputs. For instance, in Figure 2, each training whole-slide

image (WSI) is manually annotated to outline the tumor region.

The WSI is then partitioned into rectangular patches and each

patch is assigned with a label, ‘‘cancer’’ or ‘‘no-cancer,’’ deter-

mined by the tumor annotation. The majority of CNNs have

similar architectures, consisting of alternating convolutional,

pooling, and non-linear activation layers, followed by a small

number of fully connected layers. A convolution layer serves as

a feature extractor, while the subsequent pooling layer con-

denses the features into the most relevant ones. The non-linear

activation function allows themodel to explore complex relations

across features. Fully connected layers then perform the end

task, such as classification. The main strength of CNNs is their

ability to extract rich feature representations from raw data, re-

sulting in lower preprocessing cost, higher flexibility, and often

superior performance over hand-crafted models. The potential

limitations come from themodel’s reliance on pixel-level annota-
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tions, which are time intensive and might be affected by inter-

rater variability and human bias. Moreover, predictive regions

for many clinical outcomes, such as survival or treatment resis-

tance, may be unknown. CNNs are also often criticized for their

lack of interpretability, while we are able to often examine re-

gions used by the model to make predictive determinations,

the overall feature representations remain abstract. Despite

these limitations, CNNs come with impressive performance,

contributing to widespread usage in many clinically relevent ap-

plications.

Weakly supervised methods
Weakly supervised learning is a sub-category of supervised

learning with batch annotations on large clusters of data essen-

tially representing a scenario where the supervisory signal is

weak compared to the amount of noise in the dataset. A com-

mon example of the utility of weak supervision is detection of

small tumor regions in a biopsy or resection in a large gigapixel

whole slide image with labels at the level of the slide or case.

Weakly supervised methods allow one to train models with

weak, patient-level labels (such as diagnosis or survival), avoid-

ing the need for manual data annotations. The most common

weakly supervised methods include graph convolutional net-

works (GCNs), multiple-instance learning (MIL), and vision trans-

formers (VITs).

Graph convolutional networks

Graphs can be used to explicitly capture structure within data

and encode relations between objects making them ideal for

analysis of tissue biospy images. A graph is defined by nodes

connected by edges. In histology, a node can represent a

cell, an image patch, or even a tissue region. Edges encode

spatial relations and interactions between nodes (Zhang

et al., 2019). The graph, combined with the patient-level labels,

is processed by a GCN (Ahmedt-Aristizabal et al., 2021), which

can be seen as a generalization of CNNs that operate on un-

structured graphs. In GCNs, feature representations of a

node are updated by aggregating information from neighboring

nodes. The updated representations then serve as input for the

final classifier (Figure 2). GCNs can incorporate larger context

and spatial tissue structure as compared to a conventional

deep models for digital pathology which patch the image into

small regions which remain mutually exclusive. This can be

beneficial in tasks where the spatial context spans beyond

the scope of a single patch (e.g., Gleason score). On the other

hand, the interdependence of the nodes in GCNs comes with

higher training costs and memory requirements, since the no-

des cannot be processed independently.

Multiple-instance learning

MIL is a type of weakly supervised learning where multiple in-

stances of the input are not individually labeled and the supervi-

sory signal is only available collectively for a set of instances

commonly reffered to as a bag (Carbonneau et al., 2018; Cheply-

gina et al., 2019) The label of a bag is assumedpositive if there is at

least one positive instance in the bag. The goal of the model is to

predict the bag label. MIL models comprise three main modules:

feature learning or extraction, aggregation, and prediction. The

first module is used to embed the images or other higher dimen-

tional data into lower-dimensional embeddings this module can

be trained on the fly (Campanella et al., 2019) or a pre-trained
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encoder from supervised or self-supervised learning can be used

to reduce training time and data-efficiency (Lu et al., 2021). The

instance-level embeddings are aggregated to create patient-level

representations, which serve as input for the final classification

module. A commonly used aggrigation stratergy is attention-

based pooling, (Ilse et al., 2018), where two fully connected net-

works are used to learn the relative importance of each instance

(Ilse et al., 2018). The patch-level representations, weighted by

the corresponding attention score, are summed up to build the

patient-level representation. The attention scores can be also be

used in understanding the predictive basis of the model (see

‘‘multimodal interpretability’’ for additional details). In large scale

medical datasets fine annotations are often not available which

makes MIL an ideal approach for training deep models, there

are several recent examples in cancer pathology (Campanella et

al., 2019; Lu et al., 2021a,b) and genomics (Sidhom et al., 2021).

Vision transformers

VITs (Dosovitskiy et al., 2020; Vaswani et al., 2017) are a type of

attention-based learning which allows for the model to be fully

context aware. In contrast toMIL, where patches are assumed in-

dependent and identically distributed, VITs account for correlation

and context among patches. The main components of VITs

include positional encoding, self-attention, and multihead self-

attention. Positional encoding learns the spatial structure of the

image and the relative distances between patches. The self-atten-

tion mechanism determines the relevance of each patch while

also accounting for the context and contributions from the other

patches. Multihead self-attention simultaneously deploys multiple

self-attention blocks to account for different types of interactions

between the patches and combines them into a single self-atten-

tion output. A typical VIT architecture is shown in Figure 2. AWSI is

converted into a series of patches, each coupled with positional

information. Learnable encoders map each patch and its position

into a single embedding vector, referred to as a token. An addi-

tional tokens is introduced for the classification task. The class to-

ken together with the patch tokens is fed into the transformer

encoder to computemultihead self-attention and output the learn-

able embeddings of patches and the class. The output class token

serves as a slide-level representation used for the final classifica-

tion. The transformer encoder consists of several stacked iden-

tical blocks. Each block includes multihead self-attention and

MLP, along with layer normalization and residual connections.

The positional encoding and multiple self-attention heads allow

one to incorporate spatial information, increase the context and

robustness (Li et al., 2022; Shamshad et al., 2022) of VIT methods

over other methods. On the other hand, VITs tend to bemore data

hungry (Dosovitskiy et al., 2020), a limitation that the machine

learning community is actively working to overcome.

Weakly supervised methods offer several benefits. The libe-

ration from manual annotations reduces the cost of data

preprocessing and mitigates the bias and interrater variability.

Consequently, the models can be easily applied to large data-

sets, diverse tasks, and also situations where the predictive re-

gions are unknown. Since the models are free to learn from the

entire scan, they can identify predictive features even beyond

the regions typically evaluated by pathologists. The great perfor-

mance demonstrated by weakly supervised methods suggests

thatmany tasks can be addressedwithout expensivemanual an-

notations or hand-crafted features.
Unsupervised methods
Unsupervised methods explore structures, patterns, and sub-

groups in data without relying on any labels. These include

self-supervised and fully unsupervised strategies.

Self-supervised methods

Self-supervised methods aim to learn rich feature representa-

tions from within data by posing the learning problem as a

task the ground truth for which is defined within the data.

Such encoders are often used to obtain high quality lower di-

mentional embeddings of complex high dimentional datasets

for making downstream tasks more efficient interms of data

and training efficiency. For example in pathology images self-

supervised methods exploit available unlabeled data to learn

high-quality image features and then transfer this knowledge

to supervised models. To achieve this, supervised methods

such as CNNs are used to solve various pretext tasks (Jing

and Tian, 2019) for which the labels are generated automatically

from the data. For instance, a patch can be removed from an im-

age and a deep network is trained to predict the missing part of

the image from its surroundings, using the actual patch as a la-

bel (Figure 2). The patch prediction has no direct clinical rele-

vance, but it guides the model to learn general-purpose features

of image characteristics, which can be beneficial for other prac-

tical tasks. The early layers of the network are usually capture

general image features, while the later layers pick features rele-

vant for the task at hand. The later layers can be excluded, while

the early layers serve as feature extractors in for supervised

models (i.e., transfer learning).

Unsupervised feature analysis

These methods allow for exploring structure, similarity and com-

mon features across data points. For example, using embed-

dings from a pre-trained encoder one could extract features

from a large dataset of diverse patients and cluster said embed-

dings to find common features across the entire patient cohorts.

The most common unsupervised methods include clustering

and dimensionality reduction. Clustering methods (Rokach and

Maimon, 2005) partition data into subgroups such that the simi-

larities within the subgroup and the separation between sub-

groups are maximized. Although the output clusters are not

task specific, they can reveal different cancer subtypes or pa-

tient subgroups. The aim of dimensionality reduction is to obtain

low-dimensional representation capturing the main characteris-

tics and correlations in the data.

MULTIMODAL DATA FUSION

The aim of multimodal data fusion is to extract and combine

complementary contextual information across different modal-

ities for better decision-making (Zitnik et al., 2019). This is of

particular relevance in medicine, where similar findings in one

modality may have diverse interpretations in combination with

other modalities (Iv et al., 2021). For instance, an IDH1 mutation

status or histology profile alone is insufficient for explaining

the variance in patient outcomes, whereas the combination

of both has been recently used to redefine the WHO classifi-

cation of diffuse glioma (Louis et al., 2016). AI offers an auto-

mated and objective way to incorporate complementary infor-

mation and clinical context from diverse data for improved

predictions. Multimodal data-driven AI models can also utilize
Cancer Cell 40, October 10, 2022 1099



Figure 3. Multimodal data fusion
(A) Early fusion builds a joint representation from raw data or features at the input level, before feeding it to the model.
(B) Late fusion trains a separate model for each modality and aggregates the predictions from individual models at the decision level.
(C–E) In intermediate fusion, the prediction loss is propagated back to the feature extraction layer of each modality to iteratively learn improved feature repre-
sentations under the multimodal context. The unimodal data can be fused (C) at a single level or (D) gradually in different layers.
(E) Guided fusion allows the model to use information from one modality to guide feature extraction from another modality.
(F) Key for the symbols used.
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complementary and supplementary information in modalities; if

unimodal data are noisy or incomplete, supplementing redun-

dant information from other modalities can improve the robust-

ness and accuracy of the predictions. AI-driven data fusion stra-

tegies (Baltru�saitis et al., 2018) can be divided as early, late, and

intermediate (see Figure 3).
1100 Cancer Cell 40, October 10, 2022
Early fusion
Early fusion integrates information from all modalities at the input

level before feeding it into a single model. The modalities can be

represented as raw data, hand crafted, or deep features. The

joint representation is built through operations such as vector

concatenation, element-wise sum, element-wise multiplication
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(Hadamard product), or bilinear pooling (Kronecker product)

(Huang et al., 2020; Ramachandram and Taylor, 2017). In early

fusion, only onemodel is trained, which simplifies the design pro-

cess. However, it is assumed that the single model is well suited

to all modalities. Early fusion requires a certain level of alignment

or synchronization between themodalities. Although this is more

obvious in other domains, such as synchronization of audio and

visual signals in speech recognition, it is also relevant in clinical

settings. If the modalities come from significantly different time

points, such as pre- and postinterventions, then early fusion

might not be an appropriate choice.

Applications of early fusion include integration of similar modal-

ities such as multimodal, multiview ultrasound images for breast

cancer detection (Qian et al., 2021) or fusion of structural

computed tomography (CT) and/orMRI data with metabolic posi-

tron emission tomography (PET) scans for cancer detection (Le

et al., 2017), treatment planning (Lipková et al., 2019), or survival

prediction (Nieetal., 2019).Other examples include fusionof imag-

ing data with electronic medical records (EMRs), such as integra-

tion of dermoscopic images and patient data for skin lesion classi-

fication (Yap et al., 2018), or fusion of a cervigram and EMRs for

cervicaldysplasiadiagnosis (Xuetal., 2016).Several studies inves-

tigate the correlation between changes ingeneexpressionand tis-

sue morphology, integrating genomics data with histology and/or

radiology images for cancer classification (Khosravi et al., 2021),

survival (Chen et al., 2020b, 2021c), and treatment response

(Feng et al., 2022; Sammut et al., 2022) prediction.

Late fusion
Late fusion, also known as decision-level fusion, trains a separate

model for each modality and aggregates the predictions from in-

dividual models for the final prediction. The aggregation can be

performed by averaging, majority voting, Bayes-based rules

(Ramanathan et al., 2022), or learned models such as MLP. Late

fusion allows one to use a different model architecture for each

modality and does not pose any constraints on data synchroniza-

tion, making it suitable for systems with large data heterogeneity

or modalities from different time points. In cases of missing or

incompletedata, late fusion retains theability tomakepredictions,

sinceeachmodel is trained separately, andaggregations, suchas

majority voting, can be applied even if a modality is missing. Simi-

larly, inclusion of a new modality can be performed without the

need to retrain the full model. Simple covariates, such as age or

gender, are often included through late fusion due to its simplicity

(see Figure 3B). If the unimodal data do not complement one

another or do not have strong interdependencies, late fusion

might be preferable thanks to the simpler architecture and smaller

number ofparameterscomparedwithother fusionstrategies.This

is also beneficial in situations with limited data. Furthermore, er-

rors from individual models tend to be uncorrelated, resulting in

potentially lower bias and variance in late-fusion predictions. In

situations when information density varies significantly across

modalities, predictions fromshared representationscanbeheavi-

ly influenced by the most dominant modality. In late fusion, the

contribution from each modality can be accounted for in a

controlled manner by setting equal or diverse weights per modal-

ity in the aggregation step.

Examples of late fusion include integration of imaging data

with non-imaging inputs, such as fusion of MRI scans and PSA
blood tests for prostate cancer diagnosis (Reda et al., 2018),

integration of histology scans and patient gender for inferring

origin of metastatic tumors (Lu et al., 2021), fusion of genomics

and histology profiles for survival prediction (Chen et al.,

2021c; Shao et al., 2019), combination of pretreatment MRI or

CT scans with EMRs for chemotherapy response prediction

(Joo et al., 2021), and survival estimation (Nie et al., 2016).

Intermediate fusion
This is a strategy wherein the loss from the multimodal model

propagates back to the feature extraction layer of each mo-

dality to iteratively improve feature representations under the

multimodal context. For comparison, in early and late fusion,

the unimodal embeddings are not affected by the multimodal

information. Intermediate fusion can combine individual mo-

dalities at different levels of abstractions. Moreover, in sys-

tems with three or more modalities the data can be fused

either all at once (Figure 3C) or gradually across different

levels (Figure 3D). The intermediate single-level fusion is

similar to early fusion; however, in early fusion the unimodal

embeddings are not affected by the multimodal context.

Gradual fusion allows one to combine data from highly corre-

lated channels at the same level, forcing the model to

consider the cross-correlations between specific modalities,

followed by fusion with less correlated data in later layers.

For instance, in Figure 3D, genomics and histology data are

fused first, to account for the interplay between mutations

and changes in the tissue morphology, while the relation

with the macroscopic radiology data is considered in the later

layer. Gradual fusion has shown improved performance over

single-level fusion in some applications (Joze et al., 2020; Kar-

pathy et al., 2014). Lastly, guided-fusion allows model to use

informaiton from one modality to guide feature extraction from

another modality. For instance, in Figure 2E, genomics infor-

mation guides the selection of histology features. The motiva-

tion is that different tissue regions might be relevant in the

presence of specific mutations. Guided fusion learns co-

attention scores that reflect the relevance of different histol-

ogy features in the presence of specific molecular information.

The co-attention scores are learned with the multimodal

model, where the genomics feature and the corresponding

genomics-guided histology features are combined for the final

model predictions.

Examples of intermediate fusion include integration of

diverse imaging modalities, such as the fusion of PET and

CT scans in lung cancer detection (Kumar et al., 2019), fusion

of MRI and ultrasound images in prostate cancer classification

(Sedghi et al., 2020), or combination of multimodel MRI scans

in glioma segmentation (Havaei et al., 2016). Fusion of diverse

multiomics data was used for cancer subtyping (Liang et al.,

2014) or survival prediction (Lai et al., 2020). Genomics data

have been used in tandem with histology (Vale-Silva and

Rohr, 2021) or mammogram (Yala et al., 2019) images for

improved survival prediction. Guided fusion of different radi-

ology modalities was used to improve segmentation of liver le-

sions (Mo et al., 2020) and anomalies in breast tissue (Lei

et al., 2020). EMRs were used to guide feature extraction

from dermoscopic (Zhou and Luo, 2021) and mammography

(Vo et al., 2021) images to improve detection and
Cancer Cell 40, October 10, 2022 1101



Figure 4. Multimodal interpretability and introspection
(A and B) Histology: an MIL model was trained to classify subtypes of renal cell carcinoma in WSIs, while CNN was trained to perform the same task in image
patches. (A) Attention heatmaps and patches with the lowest and highest attention scores. (B) GradCAM attributions for each class.
(C and E) Integrated gradient attributions can be used to analyze (C) genomics or (E) EMRs. The attribution magnitude corresponds to the importance of each
feature, and direction indicates feature impact toward low (left) vs. high (right) risk. The color specifies the value of the input features: copy number gain and
presence ofmutation are shown in red, while blue is used for copy number loss andwild-type status. (E) Attention scores can be used to analyze the importance of
words in the medical text.
(D and F) Radiology: an MIL model was trained to predict survival from MRI scans using axial slides as individual instances. (D) Attention heatmaps mapped into
the 3D MRI scan and slides with the highest and lowest attention. (F) GradCAM was used to obtain pixel-level interpretability in each MRI slide. A 3D pixel-level
interpretability is computed by weighting the slide-level GradCAM maps by the attention score of the respective slide.

ll
OPEN ACCESS Review
classification of lesions. Chen et al. (Chen et al., 2021b) used

genomics information to guide selection of histology features

for improved survival prediction in multiple cancer types.

There is no conclusive evidence that one fusion type is ulti-

mately better than the others, as each type is heavily data and

task specific.
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MULTIMODAL INTERPRETABILITY

Interpretability and model introspection is a crucial component

of AI development, deployment, and validation. With the ability

of AI models to learn abstract feature representations, there is

concern that the models might use spurious shortcuts for
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predictions, instead of learning clinically relevant aspects. Such

models might fail to generalize when presented with new data or

discriminate against certain populations (Banerjee et al., 2021;

Chen et al., 2021a). On the other hand, the models can discover

novel and clinical relevant insights. Here we present a brief over-

view of different methods used for model introspection in

oncology (Figure 4), more technical details can be found in a

recent review (Arrieta et al., 2020). It is worth indicating that these

methods allow us to introspect parts of the data deemed impor-

tant by the model in making predictive determinations yet the

feature representation itself remains abstract.

Histopathology
In histopathology, VITs or MIL can reveal the relative importance

of each image patch for themodel predictions. Depending on the

model architecture attention or probability scores can be map-

ped to obtain slide-level attention heatmaps as shown in

Figure 4A, where an MIL model was trained to classify cancer

subtypes in WSIs. Although no manual annotations were used,

the model learned to identify morphology specific for each can-

cer type and to discriminate between normal and malignant tis-

sues. Class activation methods (CAMs), such as GradCAM (Sel-

varaju et al., 2017) or GradCAM++ (Chattopadhay et al., 2018),

allow one to determine the importance of the model inputs

(e.g., pixels) by computing how the changes in the inputs affect

the model outputs for each prediction class. GradCAM is often

used in tandem with the guided-backpropagation method, the

so-called guided-GradCAM (Selvaraju et al., 2016), where the

guided backpropagation determines the pixel-level importance

inside the predictive regions specified by the GradCAM. This is

illustrated in Figure 4B, where a CNNwas trained to classify can-

cer subtypes in image patches. For comparison, in the attention

methods, the importance of each instance is determined during

the training, while the CAM-based methods are model agnostic,

i.e., independent of the model training.

Radiology
In radiology, the interpretability methods are similar to those

used in histology. The attention scores can reflect the impor-

tance of slides in a 3D scan. For instance, in Figure 4D, an MIL

model was trained to predict survival in glioma patients (Zhuang

et al., 2022). The model considered the 3D MRI scan as a bag,

where the axial slides are modeled as individual instances.

Even in the absence of manual annotations, the model placed

high attention to the slides with tumor, while low attention was

assigned to healthy tissue. CAM-based methods can be conse-

quently deployed to localize the predictive regions within individ-

ual slides (Figure 4F).

Molecular data
Molecular data can be analyzed by the integrated gradient

method (Sundararajan et al., 2017), which computes attribution

values indicating how changes in specific inputs affect themodel

outputs. For the regression tasks, such as survival analysis, the

attribution values can reflect the magnitude of the importance

as well as the direction of the impact: features with positive attri-

bution increase the predicted output (i.e., higher risk), while fea-

tures with negative attribution reduce the predictive values (i.e.,

lower risk). At the patient level, this is visualized as a bar plot,
where the y axis corresponds to the specific features (ordered

by their absolute attribution value) and the x axis shows the cor-

responding attribution values. At the population level, the attribu-

tion plots depict the distribution of the attribution scores across

all subjects. Figure 4C shows the attribution plots for most

important genomics features used for survival prediction in gli-

oma patients (Chen et al., 2021c). Other tabular data, such as

hand-crafted features or values obtained from EMR, can be in-

terpreted in the sameway. EMRs can be also analyzed by natural

language processing (NLP) methods, such as transformers,

where the attention scores determine the importance of specific

words in the text (Figure 4E).

Multimodal models
In multimodal models, the attribution plots can also determine

the contribution of each modality toward the model predictions.

All previously mentioned methods can be used in multimodal

models to explore interpretability within each modality. More-

over, shifts in feature importance under unimodal and multi-

modal settings can be investigated to analyze the impact of

the multimodal context.

The interpretability methods usually come without any accu-

racy measures, and thus it is important not to overinterpret

them. While CAM- or attention-based methods can localize the

predictive regions, they cannot specify which features are rele-

vant, i.e., they can explain where but not why. Moreover, there

is no guarantee that all high-attention/attribution regions carry

clinical relevance. High scores just mean that the model has

considered these regions more important than others.

MULTIMODAL DATA INTERCONNECTION

The aim of multimodal data interconnection is to reveal associa-

tions and shared information across modalities. Such associa-

tions can provide new insights into cancer biology and guide

the discovery of novel biomarkers. Although there are many ap-

proaches for data exploration, here we illustrate a few possible

directions (Figure 5).

Morphologic associations
Malignant changes often propagate across different scales; onco-

genicmutationscanaffectcell behavior,which in turn reshapes tis-

suemorphologyor the tumormicroenvironmentvisible inhistology

images. Consequently, the microscopic changes might have an

impact on tumor metabolic activity and macroscopic appearance

detectable by PET or MRI scans. The feasibility of AI methods to

identify associations across modalities was first demonstrated

by Coudray et al. (Coudray et al., 2018), who showed that certain

mutations in lung cancer can be inferred directly fromhematoxylin

and eosin (H&E)-stainedWSIs.Other studies followedshortly, pre-

dicting the mutation status fromWSIs in liver (Chen et al., 2020a),

bladder (Loeffleretal., 2021), colorectal (Jangetal., 2020),and thy-

roid cancer (Tsou and Wu, 2019), as well as pan-cancer pan-mu-

tation studies attempting to predict any genetic alternation in any

tumor type (Fu et al., 2020; Kather et al., 2020). Additional molec-

ular biomarkers, such as gene expression (Anand et al., 2020;

Binder et al., 2021; Schmauch et al., 2020), hormone-receptor sta-

tus (Naiketal., 2020), tumormutationalburden (JainandMassoud,

2020), and microsatellite instability (Cao et al., 2020; Echle et al.,
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Figure 5. Multimodal data interconnection
(A and B) AI can identify associations across modalities, such as (A) the feasibility of inferring certain mutations from histology or radiology images or (B) the
relation between non-invasive and invasive modalities, such as prediction of histology subtype from radiomics features.
(C) The models can uncover associations between clinical data and patient outcome, contributing to the discovery of predictive features within and across
modalities.
(D) Information acquired by EMRs or wearable devices can be analyzed to identify risk factors related to cancer onset or uncover patterns related with treatment
response or resistance, to support early interventions.
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2020), have also been inferred fromWSIs (Murchan et al., 2021). In

radiology, AImodels have predicted IDHmutation and 1p/19q co-

deletion status from preoperative brain MRI scans (Bangalore Yo-

gananda et al., 2020; Yogananda et al., 2020) and BRCA1 and

BRCA2 mutational status from breast mammography (Ha et al.,

2017) and MRI (Vasileiou et al., 2020) scans, while EGFR and

KRAS mutations have been detected from CT scans in lung

(Wang et al., 2019) and colorectal (He et al., 2020) cancer.

By discovering the presence of morphological associations

across modalities, AI models can enhance exploratory studies

and reduce the search space for possible biomarker candidates.

For instance, in Figure 5A, AI has revealed that one of the studied

mutations can be reliably inferred fromWSI. Although the predic-

tive features used by the model might be unknown, interpret-

ability methods can provide additional insights. Attention heat-

maps can reveal tissue regions relevant for the prediction of

the specific mutation. Distinct tissue structures and cell types

in the regions with the high- and low-attention scores can be

identified, and their properties, such as nucleus shape or vol-

ume, can be further extracted and analyzed. Clustering or
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dimensionality reduction methods can be deployed to examine

the promising features, potentially revealing associations be-

tween mutation status and distinct morphological features. The

identified morphological associates can serve as cost-efficient

biomarker surrogates to support screening in low- to middle-in-

come settings or reveal new therapeutic targets.

Non-invasive alternatives
Similarly, AI can discover relationships between non-invasive and

invasive modalities. For instance, AI models were used to predict

histology subtypes or grades from radiomics features in lung

(Sha et al., 2019), brain (Lasocki et al., 2015), liver (Brancato

et al., 2022), and other cancers (Bl€uthgen et al., 2021). The predic-

tive image regions can be further analyzed to identify textures and

patterns with possible diagnostic values (see Figure 5B), which in

turn can serve as non-invasive surrogates for existing biomarkers.

Outcome associates
Benefits of personalizedmedicine are often limited by the paucity

of biomarkers able to explain dichotomies in patient outcomes.
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On the other hand, AI models are demonstrating great perfor-

mance in predicting clinical outcomes, such as survival (Lai

et al., 2020), treatment response (Echle et al., 2020), recurrence

(Yamamoto et al., 2019), and radiation toxicity (Men et al.,

2019), using unimodal and multimodal (Chen et al., 2020b,

2021c; Joo et al., 2021; Mobadersany et al., 2018) data. These

works imply the feasibility of AI models to discover relevant prog-

nostic patterns in data, which might be elucidated by interpret-

ability methods. For instance, in Figure 5C, a model is trained

to predict survival from histology and genomics data. Attention

heatmaps reveal tissue regions related to low- and high-risk pa-

tient groups, while the molecular profiles are analyzed through

attribution plots. The predictive tissue regions can be further

analyzed by examining tissuemorphology, cell subtypes, or other

human-interpretable data characteristics. Tumor-infiltrating lym-

phocytes can be estimated through co-localization of tumor and

immune cells to specify immune hot and cold tumors. Attribution

of specificmodalities as well as shifts in feature importance in un-

imodal vs. multimodal data can be explored to determine the in-

fluence of multimodal contextualization.

Such exploration studies have already provided new clinical

insights. For instance, Geessink et al. (Geessink et al., 2019)

showed that the tumor-to-stroma ratio can serve as an indepen-

dent prognosticator in rectal cancer, while the ratio of tumor area

to metastatic lymph node regions has prognostic value in gastric

cancer (Wang et al., 2021). Other morphological features, such

as the arrangement of collagen fibers in breast histology (Li

et al., 2021) or spatial tissue organization in colorectal tissue

(Qi et al., 2021), have been identified as possible biomarkers

for aggressiveness or recurrence.

Early predictors
AI can also explore diverse data acquired prior to patient diag-

nosis to identify potential predictive risk factors. EMRs provide

rich information on patient history, medication, allergies, or im-

munizations, which might contribute to patient outcome. Such

diverse data can be efficiently analyzed by AI models to search

for distinct patient subgroups (Figure 5D). Identified subgroups

can be correlated with different patient outcomes, while attribu-

tion plots can identify the relevance of different factors at the pa-

tient and population level. Recently, Placido et al. (Placido et al.,

2021) showed the feasibility of AI to identify patients with a higher

risk of developing pancreatic cancer by exploration of EMR.

Similarly, EMRs were used to predict treatment response (Chu

et al., 2020) or length of hospital stay (Alsinglawi et al., 2022).

The identified novel predictive risk factors can support large-

scale population screenings and early preventive care.

Outside of the hospital setting, smartphones andwearable de-

vices offer another great opportunity for real-time and contin-

uous patient monitoring. Changes in the measured values,

such as a decrease in patient step counts, have been shown

as robust predictors of worse clinical outcome, and increased

risk of hospitalization (Low, 2020). Furthermore, the modern

wearable devices are continually expanding their functionality,

including measurements of temperature, stress levels, or

blood-oxygen saturation or electrocardiograms. These mea-

surements can be analyzed in tandemwith clinical data to search

for risk factors indicating early stages of increased toxicity or

treatment resistance, to allow personalized interventions during
the course of treatment. Research on personalized monitoring

and nanotechnologies is investigating novel directions, such as

the detection of patient measurements in sweat (Xu et al.,

2019) or ingestible sensors to monitor medication compliance

and drug absorption (Weeks et al., 2018). All these novel devices

provide useful insights into the patient state, which could be

analyzed in a larger clinical context through AI models.
CHALLENGES AND CLINICAL ADOPTION

The path of AI into clinical practice is still laden with obstacles,

many of which are amplified in the presence of multimodal

data (Van der Laak et al., 2021). While several recent works

discuss challenges, such as fairness and dataset shifts (Banerjee

et al., 2021; Chen et al., 2021a; Cirillo et al., 2020; Howard et al.,

2021; Mehrabi et al., 2021; Zhang et al., 2018), limited interpret-

ability (Adebayo et al., 2018; Linardatos et al., 2020; Reyes et al.,

2020), or regulatory guidelines (Cruz Rivera et al., 2020; Topol,

2020; Wu et al., 2021), here we focus on challenges specific to

multimodal learning.
Missing data
The challenge of missing data refers to the absence of part of a

modality or the complete unavailability of one or more modal-

ities. The missing data affect both the model training and the

deployment, since the majority of existing AI models cannot

handle missing information. Moreover, the need to train models

with complete multimodal data significantly constrains the size

of the training datasets. Many multimodal datasets have large

scale data missingness for example in the cancer genome atlas

(TCGA) one of the largest publicly available multimodal datasets

has significant missing data points. The incomplete modalities

still contain valuable information, and the inability to deploy

them poses a significant limitation. Below we discuss two strate-

gies for handling missing data.

Synthetic data generation

Given the paucity of medical data in general synthetic data is

increasingly being used to train, develop and augment AI

models (Chen et al., 2021). If part of an image is corrupted, or

if specific mutations are not reported, the missing information

can be synthesized from the remaining data. If a whole modality

is missing, its synthetic version can be derived from existing

similar modalities. For instance, de Haan et al. (de Haan et al.,

2021) trained a supervised model for translation of H&E stains

into special stains, using the special stains as ground truth la-

bels. The model was trained on pairs of perfectly aligned data

obtained through re-staining of the same slides. If paired data

are not available, unsupervised methods such as cycle gener-

ative adversarial networks (GANs) (Zhu et al., 2017) can be

used. While synthetic data can improve the performance of

detection and classification methods, they are less suitable

for outcome prediction or biomarker exploration, where the

predictive features are not well understood and thus there is

no guarantee that the synthetic data contain the relevant dis-

ease characteristics. Moreover, the algorithms can also halluci-

nate malignant features into the supposedly normal synthetic

images (Cohen et al., 2018), which can further hurt prediction

results.
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Dropout-based methods

Dropout-based methods aim to make models robust to missing

information. For instance, Choi and Lee (Choi and Lee, 2019) pro-

posed the EmbraceNet model, which can handle incomplete or

missing data during training and deployment. The EmbraceNet

model probabilistically selects partial information from each mo-

dality and combines it into a single representation vector, which

then serves as an input for the final decisionmodel. Whenmissing

or invalid data are encountered, they are not sampled; instead,

other more complete modalities are used to compensate for the

missing data. The probabilistic data selection also has a regulari-

zation effect, similar to the dropout mechanism.

Data alignment
To investigate cancer processes across different scales andmo-

dalities, a certain level of data alignment is required. This might

include alignment of (1) similar or (2) diverse modalities.

Alignment of similar modalities

This method typically involves different imaging modalities of the

same system. This is usually achieved through image registra-

tion, which is formulated as an optimization problem minimizing

the difference between the modalities.

In radiology, rigid anatomical structures can guide the data

alignment. For instance, registration of MRI and PET brain scans

is usually achieved with high accuracy, even with simple affine

registration, thanks to the rigid skull. The situation is more com-

plex in the presence of motion and deformations, e.g., breathing

in lung imaging or changes in the body posture between scan-

ning sessions. Alignment of such data usually requires deform-

able registrations using natural or manually placed landmarks

for guidance. A particularly challenging situation is the registra-

tion of scans between interventions, e.g., registration of preoper-

ative and postoperative scans, which exhibit lot of non-trivial

changes due to tumor resection, response to treatment, or tissue

compression (Haskins et al., 2020).

In histology, each stained slide usually comes from a different

tissue cut. Even in consecutive tissue cuts there are substantial

differences in the tissue appearance caused by changes in the

tissue microenvironment or artifacts such as tissue folding,

tearing, or cutting (Taqi et al., 2018), which all complicate data

alignment. Robust and automated registration of histology im-

ages can be challenging (Borovec et al., 2020), and thus many

studies deploy non-algorithmic strategies such as clearing and

re-staining of the tissue slides (Hinton et al., 2019). A newly

emerging direction is stainless imaging, including approaches

such as ultraviolet microscopy (Fereidouni et al., 2017), stimu-

lated Raman histology (Hollon et al., 2020), or colorimetric imag-

ing (Balaur et al., 2021).

Alignment of diverse modalities

This refers to the integration of data from different scales, time

points, or measurements. Often an acquisition of one modality

results in the destruction of the sample, preventing collection

of multiple measurements from the same system. For instance,

most omics measurements require tissue disintegration, which

inevitably affects the possibility of studying relations between

cell appearance and corresponding gene expression. Here,

cross-modal autoencoders can be used to enable integration

and translation between arbitrary modalities. Cross-modal

autoencoders (Dai Yang et al., 2021) build a pair of encoder-
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decoder networks for each modality, where the encoder maps

each modality into a lower-dimensional latent space, while the

decoder maps it back into the original space. A discriminative

objective function is used to match the different modalities in

the common latent space. With the shared latent space in place,

one can combine an encoder of onemodality with the decoder of

another modality to align one modality to another one. Dai Yang

et al. (2021) demonstrated translations between single-cell chro-

matin images and RNA-sequencing data. The feasibility and util-

ity of the cross-modal autoencoders are yet to be tested with

large scale clinically relevent datasets. However, if proven

potent, they hold great potential to address challenges with

alignment and harmonization of data from diverse sources.

Transparency and prospective clinical trials
Given the complexity of representation learning-basedmodern AI

methods and the fact that they use abstract feature representa-

tions, it is possible that their mechanisms will not be fully under-

stood in the near future. However, one may argue that many as-

pects in medicine are not fully understood, either (Kirkpatrick,

2005). Some of the interpretability methods discussed earlier

are capable of indicating regionswithin data used tomake predic-

tion determination yet the actual feature representation remains

abstract. And thus, rather than dwelling on the full opacity of AI

methods, we should advocate for their rigorous validation under

randomized clinical trials, same as is done for other medical de-

vices and drugs (Ghassemi et al., 2021) . Prospective trials will

allow us to stress test the models under real-world conditions,

compare their performance against standard-of-care and current

practice, estimate how clinicians will interact with the AI tool, and

find the best way in which the models can enhance, rather than

disturb, the clinical workflow. In the case of biomarker surrogates

discovered by AI methods, regulation paths similar to ‘‘me-too’’

drugs and devices (Aronson and Green, 2020) could be used to

ensure comparable levels of performance. Transparency about

study design and the data used are necessary to determine the in-

tended use and conditions under which the model performance

has been verified and evaluated (Haibe-Kains et al., 2020). Pro-

spective clinical trials are inevitable to truly demonstrate and

quantify the added value of AI models, which will in turn increase

trust and motivation of practitioners toward the AI tools.

OUTLOOK AND DISCUSSION

AI has the potential to have an impact on the whole landscape of

oncology, ranging from prevention to intervention. AI models can

explore complex and diverse data to identify factors related to

high risksofdevelopingcancer tosupport largepopulationscreen-

ings and preventive care. The models can further reveal associa-

tions across modalities to help identify diagnostic or prognostic

biomarkers from easily accessible data to improve patient risk

stratification or selection for clinical trials. In a similar way, the

models can identify non-invasive alternatives to existing bio-

markers to minimize invasive procedures. Prognostic models

can predict risk factors or adverse treatment outcomes prior to in-

terventions to guide patient management. Information acquired

from personal wearable devices or nanotechnologies could be

further analyzedbyAImodels to search for early signs of treatment

toxicity or resistance, with other great application yet to come.
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Aswith any great medical advance, there is a need for rigorous

validation and examination via clinical studies, prospective trials

to verify the promises made by AI models. The role of AI in

advancing the field of oncology is not autonomous; rather, it is

a partnership between models and human experience that will

drive further progress. AI models come with limitations and chal-

lenges; however, these should not intimidate but rather inspire

us. With increasing incidence rates of cancer, it is our obligation

to capitalize on benefits offered by AI methods to accelerate dis-

covery and translation of advances into clinical practice to serve

patients and health care providers.
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J., Kamoun, A., Sefta, M., Toldo, S., Zaslavskiy, M., et al. (2020). A deep
learning model to predict rna-seq expression of tumours from whole slide im-
ages. Nat. Commun. 11, 3877–3915.

Sedghi, A., Mehrtash, A., Jamzad, A., Amalou, A., Wells, W.M., Kapur, T.,
Kwak, J.T., Turkbey, B., Choyke, P., Pinto, P., et al. (2020). Improving detec-
tion of prostate cancer foci via information fusion of mri and temporal
enhanced ultrasound. Int. J. Comput. Assist. Radiol. Surg. 15, 1215–1223.

Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Grad-
cam, D.B. (2016). Why did you say that?. Preprint at arXiv, 1611.07450.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2017). Grad-cam: visual explanations from deep networks via gradient-based
localization. In In Proceedings of the IEEE international conference on com-
puter vision, pp. 618–626.

Sha, X., Gong, G., Qiu, Q., Duan, J., Li, D., and Yin, Y. (2019). Identifying path-
ological subtypes of non-small-cell lung cancer by using the radiomic features
of 18f-fluorodeoxyglucose positron emission computed tomography. Transl.
Cancer Res. 8, 1741–1749.

Shamshad, F., Khan, S., Zamir, S.W., Khan, M.H., Hayat, M., Khan, F.S., and
Fu, H. (2022). Transformers in medical imaging: a survey. Preprint at arXiv,
2201.09873.

Shao, W., Han, Z., Cheng, J., Cheng, L., Wang, T., Sun, L., Lu, Z., Zhang, J.,
Zhang, D., and Huang, K. (2019). Integrative analysis of pathological images
and multi-dimensional genomic data for early-stage cancer prognosis. IEEE
Trans. Med. Imaging 39, 99–110.

Shergalis, A., Bankhead, A., Luesakul, U., Muangsin, N., and Neamati, N.
(2018). Current challenges and opportunities in treating glioblastoma. Pharma-
col. Rev. 70, 412–445.

Sidhom, J.W., Larman, H.B., Pardoll, D.M., and Baras, A.S. (2021). DeepTCR
is a deep learning framework for revealing sequence concepts within T-cell
repertoires. Nat Commun 12, 1–12.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep
networks. In In International conference on machine learning (PMLR),
pp. 3319–3328.

Taqi, S.A., Sami, S.A., Sami, L.B., and Zaki, S.A. (2018). A review of artifacts in
histopathology. J. Oral Maxillofac. Pathol. 22, 279.

Topol, E.J. (2020).Welcoming new guidelines for ai clinical research. Nat. Med.
26, 1318–1320.

Tsou, P., and Wu, C.-J. (2019). Mapping driver mutations to histopathological
subtypes in papillary thyroid carcinoma: applying a deep convolutional neural
network. J. Clin. Med. 8, 1675.

Vale-Silva, L.A., and Rohr, K. (2021). Long-term cancer survival prediction us-
ing multimodal deep learning. Sci. Rep. 11, 13505–13512.
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