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Radiological imaging is an integral component of cancer care 
and is used for screening, diagnosis and staging, as well as 
for evaluation of treatment response and surveillance for dis-

ease relapse. Beyond its routine clinical applications, imaging can 
also provide rich information about tumour phenotypes, which are 
fundamentally governed by the underlying biological processes of 
the malignancy1. This is achieved by the high-throughput extrac-
tion of quantitative image features from standard-of-care radiologi-
cal scans. This approach, known as radiomics, has been extensively 
applied in various cancer types with the goal of predicting therapy 
response and outcomes2. In addition, specific radiomic features 
have been linked to genetic and molecular characteristics of the 
tumour and its microenvironment3–8.

Currently, radiomics analysis in any given study is focused on 
one imaging modality and one cancer type only. This is neces-
sary, because most radiomics features (for example, texture) are 
highly sensitive to variations in image intensity, making them 
modality-dependent and histology-specific9,10. In clinical prac-
tice, each disease has a preferred imaging modality that maxi-
mizes tissue contrast, for instance, computed tomography (CT) 
in lung cancer and magnetic resonance imaging (MRI) in breast 
cancer. As a result, it has been challenging to apply radiomics sig-
natures identified in a cohort with a given disease and imaging 
modality to other settings, which limits their reproducibility and 
generalizability11–13.

The Cancer Genome Atlas (TCGA) consortium recently per-
formed an integrated molecular analysis of over 10,000 tumours 
in 33 cancer types14. With their greater statistical power, such 
pan-cancer studies may help identify commonly conserved pat-
terns and unifying biological themes across cancers. Microsatellite 
instability, neurotrophin receptor tyrosine kinase gene fusions and 
tumour mutational burden are prime examples of tissue-agnostic 
biomarkers that are used to select patients for specific treatment, 
regardless of tumour histology15.

Given the availability of standardized genomic and transcrip-
tomic data, current pan-cancer studies have mainly focused on 
molecular aspects of the tumour. In the context of radiological 
imaging, however, pan-cancer studies are notably lacking, primar-
ily hampered by lack of standardization and diverse tissue contrast 
in different modalities. Compared with the conventional radiomic 
approach focusing on one cancer type and one imaging modality, a 
cross-histology and cross-modality strategy may lead to the discov-
ery of unifying imaging phenotypes that are conserved across mul-
tiple cancer types and imaging modalities, which will have a broad 
impact on a larger population of patients.

In this Article, we propose novel radiological features to sys-
tematically characterize tumour morphology and spatial hetero-
geneity. These features were meticulously designed to ensure that 
they are comparable across diverse tissues and imaging contrast. 
Based on multi-institutional cohorts that span three cancer types 
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and two major modalities, we identify and validate four unify-
ing imaging subtypes that are associated with distinct oncogenic 
processes and prognoses after conventional therapies. We further 
demonstrate their potential predictive value in patients treated with 
immunotherapy.

Results
Overview of study design. We sought to define a radiological 
tumour classification scheme that is broadly applicable across can-
cer types and imaging modalities (Fig. 1a). To achieve this goal, we 
conducted an international multicentre study from 12 independent 
cohorts with a total of 1,682 patients with cancer recruited from 
the United States, Europe and Japan (Supplementary Table 1). Our 
analysis included three cancer types (lung, breast and brain malig-

nancies) and two imaging modalities (CT and MRI). All patients 
had a pathologically confirmed diagnosis of primary malignancy 
and had received standard therapies including surgery, radia-
tion, chemotherapy and/or hormonal therapy. We collected their 
pre-treatment radiological scans and, if available, tumour molecular 
profiles and clinicopathological and outcome data (Supplementary 
Tables 2–4). To rigorously assess the reproducibility of our findings, 
we divided the 12 primary cohorts into discovery and independent 
validation sets as stratified by cancer types and imaging modalities. 
Furthermore, we assessed the clinical relevance of the imaging sub-
types in a separate cohort of 102 patients with advanced lung cancer 
treated with anti-programmed cell death protein 1/programmed 
death ligand 1 (anti-PD-1/PD-L1) immune checkpoint blockade 
(Supplementary Table 5).
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Fig. 1 | Overview of the study design and quantitative imaging analysis. a, Study design, comprising five phases. b–d, Illustration of the proposed image 
feature extraction pipeline. First, the primary tumour is manually delineated and the surrounding parenchymal tissues (lung, fibro-glandular and brain) 
are automatically segmented. Two broad categories of image feature are calculated (b): systematic shape descriptors through spherical harmonic 
decomposition (c) and spatial heterogeneity described by regional variations among tumour core, tumour invasive margin and parenchymal region  
(d). NSCLC, non-small cell lung cancer; BRCA, breast cancer; GBM, glioblastoma multiforme.
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Radiological features applicable across histology and imaging 
modality. We proposed two broad categories of quantitative fea-
tures to characterize radiological phenotypes: tumour morphology 
and spatial heterogeneity (Fig. 1b–d). These features are specifically 
designed to account for diversity in tissue origin and imaging con-
trast. For morphology, we transformed the 3D tumour shape into 
a structured sequence of coefficients through spherical harmonic 
decomposition (Extended Data Fig. 1a). These coefficients provide 
an unbiased, optimal representation of the original tumour shape in 
the spatial frequency domain and can be used to fully reconstruct 
any tumour shape via a unique one-to-one mapping (Extended 
Data Fig. 1b,c). For spatial heterogeneity, we analysed three distinct 
regions of interest: tumour core, intratumoral invasive margin and 
peritumoral parenchymal margin. Based on these non-overlapping 
regions, we defined 20 features to describe multiregional intensity 
variations through a pairwise comparison of normalized probability 
distribution functions. In total, 313 image features were extracted 
for each tumour.

We first confirmed that these image features were distributed 
similarly and thus comparable across imaging modality and cancer 
type (Extended Data Fig. 2). To test the reproducibility of extracted 
features against variation in tumour delineation, we randomly per-
turbed the original tumour contour and observed an overall high 
consistency with intraclass correlation coefficient of 0.83, indicating 
that our proposed features are robust to variation in tumour seg-
mentation (Supplementary Fig. 1).

Efficient encoding of radiological features using machine learn-
ing. We split the patients in the 12 primary cohorts into a discovery 
set and a validation set stratified by cancer types, with the discovery 
set containing 601 patients with lung cancer, 269 with breast can-
cer and 136 with glioblastoma multiforme (GBM), and the valida-
tion set containing 360 patients with lung cancer, 185 with breast 
cancer and 131 with GBM. Given the large number of features, we 
trained an artificial neural network (ANN) called ‘autoencoder’ in 
the discovery cohort to learn efficient representations of the original 
features and mitigate the curse of dimensionality (Extended Data 
Fig. 3a). The trained autoencoder was tested in the validation set 
(Extended Data Fig. 3b). Instead of linear principal component 
analysis (PCA), we used autoencoder for feature representation 
due to its capability of modelling complex nonlinear patterns. After 
training, the autoencoder substantially reduced the dimension of 
features to 10 from 313, while at the same time maximally preserv-
ing information in the original data (Extended Data Fig. 3b,c). The 
feature dimension reduction has the dual advantages of effectively 
removing redundancy in the features and improving the stability 
and efficiency of subsequent clustering analysis.

Discovery and validation of tumour subtypes across histology 
and imaging modality. In the discovery set (n = 1,006), based on the 
consensus clustering of radiological tumour phenotypes encoded by 
10 autoencoder features, we determined the optimal cluster number 
to be four (Fig. 2a and Supplementary Fig. 2a), which maximized 
consensus within clusters while minimizing ambiguity in cluster 
assignments. Next, we independently applied the same consensus 
clustering analysis and trained autoencoder in the validation set 
(n = 676) and also identified four clusters of patients (Fig. 2b and 
Supplementary Fig. 2b). To measure the reproducibility of clusters 
across the discovery and validation sets, we computed the in-group 
proportion (IGP) statistics, which showed high consistency for four 
clusters, with IGP values of 92.4% (P < 1 × 10−10), 91.1% (P = 0.002), 
83.2% (P = 0.008) and 78.0% (P = 0.021), respectively.

We then split the patients based on imaging modalities, that is, 
CT versus MRI. Based on the discovery set of CT features in 961 
lung cancer patients, we again identified four clusters (Fig. 2c and 
Supplementary Fig. 2c). Similarly, four clusters were identified in 

the validation set based on MRI features in 454 patients with breast 
cancer and 267 with GBM (Fig. 2d and Supplementary Fig. 2d). 
These clusters were found to be highly consistent across imaging 
modality, with IGP values of 81.0% (P = 0.032), 80.0% (P = 0.041), 
91.8% (P = 0.014) and 91.2% (P = 0.008), respectively.

After confirming the consistency of patient clusters across imag-
ing modalities and cancer types, we refined the subtypes by using all 
patients in the primary cohorts (Fig. 2e and Supplementary Fig. 2e).  
Overall, this resulted in 580 patients (34.5%) in cluster 1, 647 
patients (38.5%) in cluster 2, 272 patients (16.2%) in cluster 3 and 
183 patients (10.9%) in cluster 4. All four clusters were represented 
in each of the three cancer types (Extended Data Fig. 4a). The distri-
bution of clusters was largely independent of cancer type (Cramér’s 
V = 0.21, P = 0.073). We further evaluated the accuracy of the clus-
tering results (details are provided in the Methods). Overall, the 
cluster purity scores were 91–97%, confirming the validity of the 
clustering results (Fig. 2f). Within each cancer type and imaging 
modality, the clusters remained highly reproducible. These histol-
ogy and modality-independent clusters are hereafter named imag-
ing subtypes 1 to 4.

Imaging characteristics distinguishing the tumour subtypes. To 
better understand specifically which factors contribute to the dis-
tinction among the subtypes, we performed differential analysis by 
using the original 313 imaging features while controlling for multiple 
testing (Extended Data Fig. 5). We identified four main categories of 
image feature associated with the subtypes, which measure tumour 
volume, shape symmetry, shape regularity and regional variation 
(Fig. 3a,b). Based on this analysis, we summarize the radiological 
interpretations of four subtypes in Fig. 3c. Specifically, subtype 1 
mainly consists of small tumours with large variations across the 
tumour–parenchyma interface (that is, a distinct, sharp margin). 
Subtype 2 consists of intermediate-sized tumours with a moder-
ately well-defined margin. Subtype 3 consists of large tumours with 
an ill-defined, blurred margin. Subtype 4 is characterized as large 
tumours with a moderately well-defined margin. For tumour mor-
phology, subtypes 1 to 3 had similarly smooth and regular shapes, 
while subtype 4 had the highest complexity with a rugged and irreg-
ular shape. Figure 3d shows a graphical representation of the four 
imaging subtypes in the feature space.

Clinical validation for the prognostic significance of the imag-
ing subtypes. We tested the prognostic relevance of the imaging 
subtypes and observed significant differences in patient prognosis 
within each cancer type (Fig. 4a–c). In non-small cell lung cancer 
(NSCLC), subtype 1 was associated with the best survival, sub-
types 2 and 3 with intermediate prognoses, and subtype 4 with the 
worst prognosis. Consistently, in breast cancer and GBM, patients 
in subtype 4 also had the worst prognosis. In multivariate analy-
sis, subtype 4 remained an independent predictor for poor survival 
after adjusting for stage, tumour volume, clinicopathological fac-
tors and specific molecular features (Fig. 4d–f and Supplementary  
Tables 6 and 7).

We further evaluated the prognostic significance of the imaging 
subtypes by focusing on patients in clinically relevant subgroups. 
Specifically, we confirmed that their prognostic value was largely 
independent of disease stage and primary treatment in NSCLC. 
The distribution of subtypes for clinical stage in NSCLC is shown in 
Extended Data Fig. 4b. Moreover, the imaging subtypes remained 
prognostic within early (stage I/II) as well as locally advanced 
(stage III) NSCLC (Extended Data Fig. 6a,b). One notable excep-
tion is subtype 4, which was associated with a worse prognosis com-
pared with subtype 3 for patients treated with surgery (hazard ratio 
(HR) = 1.82, 95% confidence interval (CI) 0.89–3.75, P = 0.064). On 
the other hand, subtype 4 appeared to have an improved prognosis 
that is similar to subtype 3 for patients treated with radiotherapy 
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(HR = 0.94, 95% CI 0.61–1.46, P = 0.8; Extended Data Fig. 6c,d). 
Fewer patients in subtypes 3 and 4 received surgery compared with 
radiotherapy (n = 67 versus 160). We tested the interaction between 

therapeutic regimen (surgery versus radiotherapy) and subtype 
3 versus 4 and found a possible interaction effect (P = 0.063). 
Moreover, we performed subgroup analysis by stratifying tumours 
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according to driver gene alterations in NSCLC, such as EGFR and 
ALK (Extended Data Fig. 7a–c).

Similarly, we tested the imaging subtypes in different histo-
logical subtypes of breast cancer and confirmed prognostic sig-
nificance, especially in human epidermal growth factor receptor 2 
(HER2)-positive patients (Extended Data Fig. 7d–f). For GBM, we 
tested the survival stratification by imaging subtypes in different 
patient subgroups defined by O6-methylguanine-methyltransferase 
(MGMT) methylation or IDH1 mutation status (Extended Data  
Fig. 7g–i).

To further demonstrate the advantage of using these 
cross-modality and cross-histology image features, we compared 
the performance for prognostic prediction using the conventional 
radiomic approach. Specifically, we trained a radiomic model in a 
supervised manner to predict the survival of patients with lung can-
cer (Extended Data Fig. 8a,b). We observed that the radiomics risk 
score was highly correlated with tumour size (Pearson correlation 
coefficient = 0.92, Extended Data Fig. 8c), and the radiomics model 

had a C-index of 0.60 (95% CI: 0.56–0.64) in the validation cohort. 
By comparison, our proposed imaging subtypes were independent 
of tumour volume and achieved a C-index of 0.67 (95% CI: 0.63–
0.72) in the validation cohort, which is significantly better than the 
radiomics model (P < 0.001, Extended Data Fig. 8d).

Biological validation for the molecular basis of the imaging sub-
types. We performed gene set enrichment analysis (GSEA) to iden-
tify molecular pathways associated with the imaging subtypes. In 
NSCLC, for subtype 1 with the most favourable prognosis, the major-
ity of cancer hallmark pathways, including proliferation, angiogen-
esis and hypoxia, were significantly downregulated compared with 
other subtypes (Extended Data Fig. 9a and Supplementary Table 9).  
By contrast, many cancer hallmarks, including glycolysis and 
metastasis-related pathways, were upregulated in subtype 4, sug-
gesting a more aggressive phenotype consistent with the poor sur-
vival in these patients (Extended Data Fig. 9b and Supplementary 
Table 10). Of note, we also observed an increased expression of 
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genes related to radiation response, such as cell cycle, apoptosis and 
DNA repair, consistent with their increased survival when treated 
with radiotherapy.

Similar enrichment analyses were also performed separately for 
breast cancer and GBM. However, we did not observe any pathways 
that reached the predefined statistical significance level at a false 
discovery rate (FDR) of <0.05, probably due to the limited statistical 
power given the small number of samples (Extended Data Fig. 9c–f).  
We further investigated the distribution of established molecular 
subtypes among the different imaging subtypes (Extended Data 
Fig. 4c,d), and these were independent of each other, with Cramér’s 
V = 0.18 (P = 0.539) for breast cancer and 0.16 (P = 0.490) for GBM.

Imaging subtypes stratify survival in patients treated with immu-
notherapy. The imaging subtypes were discovered and validated in 
12 primary cohorts of patients treated with conventional therapies. 
We sought to further evaluate their clinical relevance in the immu-
notherapy setting in a completely independent cohort. To this end, 
we collected data from an institutional cohort of 102 patients with 
advanced NSCLC who were treated with immune checkpoint block-
ade. Given the extracted CT features of primary tumours, we trained 
a multiclass classification model using XGBoost (Supplementary 
Methods) to predict the imaging subtype of each new patient.  

The majority of these patients with advanced NSCLC were classified 
as either subtype 3 (37%) or subtype 4 (50%), as shown in Fig. 5a, 
and both subtypes had large tumours. This is consistent with the 
fact that advanced-stage tumours tend to be larger than early-stage 
tumours. We then confirmed that the distributions of character-
istic imaging features followed the same patterns in both the pri-
mary and immunotherapy cohorts (Fig. 5b). In particular, tumours 
in subtype 3 had a regular shape and ill-defined, blurred margin, 
whereas those in subtype 4 had irregular shape and a moderately 
well-defined margin.

There was no statistically significant difference in survival 
between patients in subtypes 1&2 and subtype 4 (Extended Data 
Fig. 10). Strikingly, we observed that patients in subtype 4 had 
significantly better survival compared with subtype 3 (HR = 0.46, 
95% CI: 0.23–0.93, P = 0.034), as shown in Fig. 5c. This is in stark 
contrast with the results in our primary cohorts treated with con-
ventional therapies, where patients in subtype 4 had a significantly 
worse prognosis. We further compared the immune cell composi-
tion in the tumour microenvironment between subtypes 3 and 4. 
Tumours in subtype 4 had a higher infiltration of several adaptive 
immune cell populations, including activated CD56dim natural killer 
(NK) cells, cytotoxic CD8 T cells, CD4 T helper cells and γδ T cells 
(Fig. 5d and Supplementary Table 11).
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Deep learning enables automated tumour segmentation and 
reproducible identification of imaging subtypes. Our previous  
analysis of the imaging subtypes requires the tumour contour, 
which involves manual delineation and is subject to inter- and 
intra-rater variability. To overcome this issue and facilitate practi-
cal implementation, we trained a deep learning model based on 
the two-dimensional (2D) U-Net (Fig. 6a) to perform automated 
tumour segmentation. The U-Net model performed well at seg-
menting tumours in NSCLC, with average Sørensen–Dice coef-
ficients of 0.90, 0.88 and 0.84 for training, validation and testing, 
respectively (Fig. 6b). This model performed especially well for 
large tumours (>10 cm3), with Sørensen–Dice coefficient > 0.9, 
and for tumours not attached to mediastinum, with Sørensen–Dice 
coefficient > 0.85 (Fig. 6c,d). On the other hand, the U-Net model 
did not perform well in breast cancer, with Sørensen–Dice coef-
ficients of 0.73, 0.72 and 0.69 for training, validation and testing, 
respectively (Supplementary Fig. 3). For GBM, tumour segmenta-
tion was performed with a pre-trained deep learning model.

Finally, we applied the automatically generated tumour segmen-
tations of lung patients and repeated the entire pipeline for imaging 

subtype discovery (Fig. 6e). The clustering results were highly 
reproducible, with the cluster assignment for the majority (83.5%) 
of patients remaining unchanged based on manual versus deep 
learning generated segmentations (Fig. 6f).

Discussion
In this international multi-cohort study of 1,682 patients, we dis-
covered and independently validated novel tumour subtypes that 
are broadly applicable across major imaging modalities and three 
cancer types. These subtypes demonstrate distinct radiological 
and molecular features, as well as survival outcomes after conven-
tional therapies. Moreover, their prognostic value was indepen-
dent of established clinical risk factors, including tumour volume. 
Importantly, we showed that specific imaging subtypes are associ-
ated with differential outcomes after immunotherapies. Finally, we 
demonstrated that deep learning can be used to automate tumour 
segmentation, which will help standardize subtype identification 
and facilitate its implementation in clinical practice.

Radiologic-based classification has several important advantages 
over histopathologic assessment or molecular tumour profiling. 
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First, imaging evaluation is performed for the entire 3D tumour 
in situ, which overcomes the sampling bias of a small biopsy due 
to intratumoral spatial heterogeneity. Second, imaging provides a 
non-invasive means for evaluation, which would allow longitudi-
nal monitoring and follow-up of disease. Because radiomic features 
provide a representation of tumour phenotypes from a radiological 
perspective, the proposed radiologic-based tumour classification 
could complement current clinical and molecular classification. 
We envision that integration of information from different domains 
may further enhance the prediction of treatment response and 
prognosis for precision oncology16,17.

It is important to emphasize that the purpose of our work is 
not to develop a predictive model for a specific clinical endpoint 
(such as prognosis) in a particular cancer as is done in the tra-
ditional radiomics approach with supervised machine learning. 
Rather, our study is aimed at the discovery of unifying radiologi-
cal phenotypes across different imaging modalities and cancer 
types. By identifying these converging radiographic hallmarks, 
we further revealed biological insights and established their con-
nection with prognosis and response to different cancer treat-
ments including surgery, radiation and chemotherapy, as well as 
immunotherapy.
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Previous works on radiomics have been limited to one cancer 
type and one imaging modality in any given study. Consequently, 
it is difficult to generalize the findings, which are often based on 
relatively small datasets13. Here, we aimed to discover common 
radiological patterns with biological and clinical relevance across 
histology and modality. To achieve this goal, we meticulously 
designed image features that are robust to tissue contrast. This 
study provides a conceptual framework that will allow aggregation 
of datasets with disparate modalities and cancer types, similar to 
integration of molecular data in pan-cancer studies by TCGA.

Despite extensive investigations in radiomics, progress towards 
clinical translation has been slower than anticipated12,13. One major 
reason is a lack of reproducibility and rigorous validation, given 
the exploratory nature and inclusion of small numbers of patients 
in many studies12,18. Textural features, which usually represent the 
overwhelming majority of features in a typical radiomics study, have 
been shown to be highly sensitive to imaging protocol and techni-
cal factors9. This has precluded meaningful comparison of existing 
radiomics signatures across studies with different modalities and 
various cancer types11.

To overcome these issues, we focused on two broad categories of 
radiological feature (tumour morphology and spatial heterogeneity) 
and made special efforts to ensure their compatibility across imag-
ing modalities. Geometric features are computed based on a binary 
image of the tumour contour, and are insensitive to tissue contrast 
and can be readily comparable across different imaging modalities 
and cancer types19. Specifically, we applied the spherical harmonic 
decomposition method to approximate the 3D tumour shape with a 
series of orthonormal basis functions defined on the surface of the 
sphere. Similar to Fourier analysis of time series, this allows us to 
interrogate, in an unbiased manner, the geometric patterns with an 
ordered sequence of coefficients in the frequency domain. Previous 
morphological features only focus on the low-frequency component 
(Extended Data Fig. 1c, degree 1) and disregard rich information 
captured at higher spatial frequencies (degrees 2 to 15).

Although texture features are widely used as a measure of tumour 
heterogeneity, current approaches typically do not distinguish dif-
ferent regions within the tumour; most are focused on the primary 
tumour, ignoring the surrounding parenchyma. There is emerg-
ing evidence supporting the clinical relevance of these different 
regions20,21. Here, we measure tumour heterogeneity by performing 
spatially explicit analysis of intratumoral and peritumoral regions, 
as well as the invasive margin. By making pairwise comparison of 
normalized density functions and using each region as an internal 
control, we generate features that are robust to variability in tissue 
contrast. It is worth noting that our tumour subregions are defined 
from a ‘geometric’ perspective, which is simple to implement and is 
generally applicable across cancer types and imaging modalities. On 
the other hand, physiological tumour subregions or habitats such as 
hypoxia and hypermetabolic activity can provide more meaningful 
biological information, and they do not necessarily follow this sim-
ple geometric paradigm22,23. One caveat is that these physiological 
tumour subregions are probably cancer type-specific and imaging 
modality-dependent, and reliable identification of these subregions 
requires sophisticated algorithms, such as habitat imaging24,25.

Here, we have shown that the imaging subtypes are associated 
with distinct survival outcomes in three cancer types after conven-
tional therapies. Furthermore, the prognostic value of our imag-
ing subtype is independent of tumour volume and other clinical 
factors. A key limitation of previous radiomic studies is that some 
signatures may be correlated with tumour burden, which would 
diminish their clinical relevance26. Similarly, we also observed 
that the radiomics model is highly correlated with tumour size 
(Extended Data Fig. 8c). This underscores the importance that any 
useful biomarker must provide additional value beyond established 
risk factors.

The new imaging subtypes may have therapeutic implications. 
In particular, we found that subtype 4 was associated with improved 
survival in NSCLC patients treated with immune checkpoint block-
ade. Consistently, we found a higher infiltration of cytotoxic NK 
and T lymphocytes in the tumour microenvironment of subtype 
4. These results suggest that subtype 4 tumours are associated with 
a pre-existing antitumour immunity and thus may preferentially 
respond to immunotherapy27. Interestingly, a recent study devel-
oped a CT-based radiomics signature specifically for estimating 
tumour-infiltrating CD8 T cells, which was correlated to survival 
after immunotherapy4. These findings are based on retrospective 
analysis and will require prospective validation in future random-
ized trials.

For clinical implementation, different imaging modalities 
used in different malignancies may introduce some practical 
challenges. For instance, in lung cancer imaging, normal breath-
ing can induce some degree of tumour motion depending on its 
anatomic location, which may cause blurring artefacts in the CT 
image. Methods for dynamic lung modelling and tumour track-
ing may be useful28. Modern multi-slice CT scanners allow fast 
imaging with a breath-hold protocol and can largely mitigate 
this issue. On the other hand, MRI is subject to its own source 
of variability due to the use of various sequence protocols and 
parameters. Further development in quantitative imaging with 
standardized acquisition should improve image quality and the 
reproducibility of radiomic biomarkers29. In breast cancer, MRI 
may be acquired after tumour biopsy, which can introduce imag-
ing artefacts and affect the calculation of certain features related 
to spatial variation.

One limitation of the radiogenomic analysis is that gene expres-
sion profiling was performed for the bulk tumour from surgical 
specimens. Single-cell gene expression analysis can provide much 
refined details and offer a deeper insight about tumour heterogene-
ity30. In future work, the radiogenomic association findings should 
be confirmed at the protein level using immunohistochemistry or 
immunofluorescence assays. Furthermore, it will be important to 
establish a ‘mechanistic’ link between the imaging subtypes and 
their biological underpinnings, which will require gene knock-in/
knockout experiments using in vivo animal studies.

Deep learning, such as convolutional neural networks, has 
emerged as a powerful technique for medical image analysis and 
achieved promising performance in various clinical applications31–33. 
Future development of advanced deep learning techniques includ-
ing physics-reinforced or physics-award algorithms34–36 can lead to 
further improvement for more reliable automated tumour segmen-
tation37, which will allow consistent identification of the imaging 
subtypes defined here.

Finally, we note that, while finding unifying imaging phenotypes 
across cancers is useful, as demonstrated here, there certainly exist 
modality- and histology-specific features that are also important in 
determining disease outcomes. For example, the oedematous and 
diffusive growth pattern as visualized by specific MRI sequences is 
unique to GBM38. In this study, we mainly investigated anatomi-
cal imaging with CT and MRI, the two most widely used modali-
ties in clinical oncology practice. Our result does not contradict the 
ongoing or future investigation of imaging characteristics that are 
specific to modality or cancer type39. More advanced, specialized 
imaging technologies may allow direct visualization of the func-
tional and molecular characteristics, which could provide comple-
mentary information about the disease.

In conclusion, we have proposed a radiological tumour classifi-
cation system that is applicable across imaging modality and histol-
ogy. These imaging subtypes are associated with distinct oncogenic 
and microenvironmental features as well as survival patterns. Future 
studies are needed to validate the potential of this system to identify 
patients who are likely to benefit from immunotherapy.
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Methods
Study design and patient cohorts. For subtype discovery and validation, we 
included a total of 12 cohorts: 6 NSCLC cohorts (n = 961) with CT scans and 4 
breast cancer cohorts (n = 455) and 2 GBM cohorts (n = 266) with MRI scans. 
Among these, data for three cohorts (one for each cancer type) were retrospectively 
collected from each participating centre and the remaining nine cohorts are 
publicly available. Follow-up and outcome data were available for 1,289 patients. 
We evaluated the prognostic significance of the imaging subtypes in different 
clinical settings. Furthermore, using the tumour gene expression data available for 
652 patients, we investigated molecular correlates of the imaging subtypes. Finally, 
we collected data from an independent cohort of 102 patients with advanced lung 
cancer treated with anti-PD-1/PD-L1 immune checkpoint blockade and assessed 
the clinical relevance of imaging subtypes in the immunotherapy setting. Detailed 
clinical characteristics for the discovery cohorts and the immunotherapy validation 
cohort are summarized in Supplementary Tables 2 to 5 (Supplementary Methods).

Scan acquisition and image processing. We collected pre-treatment scans for the 
most commonly used imaging modality for each cancer, that is, CT for NSCLC 
and MRI for breast and GBM. Given the heterogeneous scan protocols, we applied 
a series of image-processing algorithms to harmonize the image data and facilitate 
robust feature extraction. The primary tumour was manually delineated in all slices 
by experienced physicians, and the surrounding lung, brain and breast parenchyma 
were automatically segmented. Details about the scan protocols, image processing 
and segmentation are presented in the Supplementary Methods.

Radiological features. We defined two broad categories of quantitative features: 
tumour morphology and spatial heterogeneity. For morphology, we transformed 
the 3D tumour shape into a structured sequence of coefficients through spherical 
harmonic decomposition (Extended Data Fig. 1a). Special efforts were made to 
ensure that the shape decompositions were invariant to scale (size), translation and 
rotation. Based on these coefficients, we proposed additional second-order features 
to summarize the shape complexity, including shape irregularity, which measures 
the boundary smoothness as well as shape symmetry that measures directionally 
dependent tumour expansion. We extracted five features to characterize tumour 
burden, resulting in 293 shape descriptors (fS) . For spatial heterogeneity, we 
analysed three distinct regions of interest given the tumour contour and its 
surrounding parenchyma, designated as tumour core, intratumoral invasive margin 
and parenchymal (peritumoral) margin. Based on these non-overlapping regions, 
we defined 20 features (fR) to describe multiregional intensity variations through 
pairwise comparison of normalized probability distribution functions. The details 
of the image features and their interpretations are explained in the Supplementary 
Methods and Supplementary Table 12. In total, 313 quantitative image features 
were extracted for each tumour.

To evaluate the sensitivity of feature extraction with respect to variation 
in tumour segmentation, we generated a new set of tumour segmentation 
through random perturbation of the original tumour contour by applying elastic 
deformation in 100 randomly selected patients via the Matlab function affine3d. 
We then repeated the pipeline for image feature extraction and computed the 
intraclass correlation coefficient between the two sets of extracted image features.

We trained and validated an autoencoder, a type of artificial neural network 
used for dimensionality reduction and representation learning, to efficiently 
encode the original 313 image features in a low-dimensional space (Extended Data 
Fig. 3). We chose autoencoder rather than linear PCA to account for the complex 
nonlinear relationship among high-dimensional features. The dimensionality 
reduction will avoid undue influence of redundant features and also reduce noise. 
Details are described in the Supplementary Methods.

Discovery and validation of imaging subtypes. We identified the intrinsic 
imaging subtypes by applying unsupervised consensus clustering to study patients 
from 12 multicentre cohorts (details are provided in the Supplementary Methods). 
The patients were divided into discovery and validation sets based on cancer types 
and imaging modalities to assess the reproducibility of the clustering analysis and 
prevent information leakage. As there were multiple cohorts, the largest cohort 
within each cancer type was preselected as the validation set and the remaining 
ones were merged into the discovery set. The consensus clustering analysis was 
carried out separately in the discovery and validation cohorts, with identical 
configurations. In detail, the partition around the medoids clustering algorithm40 
with the Pearson’s correlation distance metric was used as the basis for clustering. 
We performed 10,000 bootstraps with 80% item resampling of the autoencoder 
features. The optimal number of clusters was determined by varying from 2 to 
10 and finding the one that produced the most stable consensus matrices and the 
most unambiguous cluster assignments across permuted runs. The IGP statistic41 
was applied to measure the similarity of imaging subtypes identified between the 
discovery and validation sets. IGP ranges from 0 to 100%, where a higher value 
indicates more similarity between two datasets.

With confirmation of the highly consistent imaging subtypes across discovery 
and validation cohorts, we refined the final imaging subtypes pulling all patients 
in the 12 cohorts. To obtain a robust subtype definition, the reproducibility of 
clustering analysis was evaluated in a repeated five-fold cross-validation scheme, 

where patients were randomly separated into training and testing sets at a ratio 
of 4:1. The training set was used to build the clustering model, which in turn was 
used to predict patient labels in the hold-out testing set. Cluster purity42 was used 
to evaluate the clustering robustness. Cluster purity ranges from 0 to 100%, where 
a higher value indicates greater robustness of the clustering results. Finally, we 
identified specific radiological features that were significantly associated with the 
newly identified imaging subtypes. Specifically, the single-sample GSEA (ssGSEA) 
algorithm43 was applied to compute the enrichment scores, and the limma 
algorithm44 was implemented to model the differential expression in imaging 
features.

Clinical validation for prognostic significance. For 1,289 patients with detailed 
follow-up information, we evaluated the prognostic relevance of the imaging 
subtypes. Within each of the three cancer types, we adjusted for established 
clinicopathological risk factors in the multivariate analysis. For NSCLC (n = 701), 
we adjusted for age, gender, stage and tumour volume. For breast cancer (n = 226), 
we included age, estrogen receptor (ER), progesterone receptor (PR) HER2 status 
and tumour volume. For GBM (n = 260), we considered age, gender, MGMT 
methylation, IDH1 mutation status and tumour volume. We also evaluated the 
prognostic significance of the imaging subtypes in clinically relevant subgroups, 
such as primary treatment (surgery versus radiotherapy) in NSCLC and established 
molecular subtypes in breast cancer and GBM.

Biological validation to identify molecular correlates. We performed GSEA to 
identify molecular pathways associated with each of the imaging subtypes. This 
was done in a subset of patients for whom both imaging and gene expression data 
were available (NSCLC (n = 274), breast cancer (n = 254) and GBM (n = 124)). 
Specifically, the ssGSEA algorithm43 was applied to compute the enrichment 
scores of 50 cancer hallmark pathways curated from MSigDB. Moreover, 
ssGSEA is a powerful way to mitigate batch effects and overcome discrepancies 
between different technologies (RNA sequencing versus microarray). The limma 
algorithm44 was implemented to model the differential expression pathways.

Clinical evaluation in lung cancer immunotherapy. We analysed an independent 
cohort of 102 patients with advanced NSCLC treated with anti-PD-1 or anti-PD-L1 
immune checkpoint blockade, and assessed clinical outcomes in relation to the 
previously identified imaging subtypes. For imaging feature extraction, we focused 
on the lesion with the largest size. Because this cohort was not included in the 
imaging subtype discovery and validation sets, we built an ensemble learning 
classifier (XGBoost, Supplementary Methods) to predict the imaging subtype 
label of each new patient given the radiological features bypassing the procedure 
of dimension reduction and clustering. Because the immune cell composition in 
the tumour microenvironment may influence the response to immunotherapy, we 
assessed the enrichment of tumour-infiltrating immune cells for each individual 
imaging subtype. In particular, we took the gene expression for 274 primary 
NSCLC tumour samples and then estimated the abundance of 16 immune cell 
populations by using a previously curated list of genes (Supplementary Table 13).

Evaluation of subtype reproducibility with deep learning of automated tumour 
segmentation. We trained a deep convolutional neural network (U-Net45) to 
fully automate the tumour segmentation process (details are provided in the 
Supplementary Methods). The main goal was to reduce the inter-observer 
variations and improve consistency in tumour segmentation by standardizing 
this process. Furthermore, automated segmentation can facilitate clinical 
implementation of the tumour subtyping approach by saving time and annotation 
efforts. The Sørensen–Dice coefficient was used to measure the quality of 
automated segmentation, with manual contours serving as the ground truth. The 
automated contours were used as input to repeat the entire computational analysis 
and assess reproducibility of the previously identified imaging subtypes.

Statistical analysis. Kaplan–Meier analysis and log-rank tests were used to 
evaluate the statistical significance of patient stratification by the imaging subtypes. 
The Cox proportional hazard regression model was used to adjust for relevant 
clinicopathologic variables in multivariable analysis. For differential expression 
analysis, the Benjamini–Hochberg method was used to adjust for multiple 
statistical testing and control the FDR. The Cramér’s V statistic was used to assess 
the correlation between imaging clusters and cancer types. All statistical tests 
were two-sided, with a P value of <0.05 or FDR of <0.05 considered statistically 
significant. All statistical analyses were performed in R.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
The data are available within the Article or the Supplementary Information. 
The imaging data for 9 out of a total of 13 cohorts used in this study are publicly 
available through the TCIA website (https://www.cancerimagingarchive.net/), 
as described in the Supplementary Information. The imaging data for the breast 
cancer cohort from Hokkaido University, Japan are publicly available at  
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https://drive.google.com/drive/folders/1AsI-bvUWwdmwMd7SHXzJttUsKqmIm
AGz?usp=sharing. The imaging data for the Stanford Lung Cancer, Lung Cancer 
Immunotherapy and Cambridge GBM cohorts are not publicly available because 
they contain sensitive information that may compromise patient privacy as well 
as the ethical restrictions or regulation policy of local institutions. These data will 
be made available to individuals who contact the corresponding authors with a 
reasonable request, for example, for non-commercial, research purposes. The gene 
expression data and mutational data of TCGA samples are publicly available in the 
Genomic Data Commons (https://gdc.cancer.gov/). The gene expression data for 
the other cohorts are available from the Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/, accession nos. GSE22226, GSE103584 and GSE58661).

Code availability
For the spherical harmonic decomposition, we used the SPHARM-MAT software 
(http://www.iu.edu/~spharm/). For autoencoder, XGboost and consensus clustering, 
we used R software (version 3.5.3, R Foundation for Statistical Computing, Vienna, 
Austria), the package autoencoder (version 1.1), XGboost (version 1.1.1.1) and 
ConsensusClusterPlus (version 1.52.0). The U-Net architecture is available at https://
github.com/lyakaap/Kaggle-Carvana-3rd-place-solution. Custom codes46 are available 
at https://github.com/WuLabMDA/PanCancer.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Morphological characterization of tumours by spherical harmonic decomposition. Morphological characterization of tumours 
by spherical harmonic decomposition. a) Overall design of morphological analysis; b) Illustration of 3D spherical harmonic basis functions at different 
degrees and orders; c) Illustration of 3D tumours reconstructed by coefficients obtained from spherical harmonic decomposition. Each row represents a 
selected 3D tumour, which is reconstructed using decomposition results at 5 different degree levels. Here, lower degree captures more global patterns and 
higher degree corresponds to more detailed morphological patterns.
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Extended Data Fig. 2 | The ridgeline plots present the distribution of 20 regional variation features in three different cancer types. The ridgeline 
plots present the distribution of 20 regional variation features in three different cancer types. Here, we investigate 2 tumour regions, tumour core (TC) 
and tumour invasive margin (TIM), plus 2 peritumour regions, parenchymal margin at 5 mm or 10 mm (PM5 or PM10). In total, 5 pair-wise regions are 
considered, namely, TC-TIM, TC-PM5, TC-PM10, TIM-PM5, TIM-PM10. Variation for each pair-wise region was quantified with four measures (chi-square, 
Bhattacharyya distance, correlation, intersection), yielding 5*4 = 20 regional variation features. TC-PM5 and TC-PM10 related features are colored in 
green, while TIM-PM5 and TIM-PM10 related features are colored in blue.
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Extended Data Fig. 3 | Details of imaging feature dimension reduction via an autoencoder model. Details of imaging feature dimension reduction via 
an autoencoder model. a) The structure of autoencoder used to learn a low-dimensional mapping of the original feature signals with detailed tuning 
hyperparameters; b) The optimal autoencoder loss curves in training and validation; c) Heatmap of pairwise correlations between 10 autoencoded 
features.
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Extended Data Fig. 4 | Distribution of imaging clusters (subtypes) in different clinical groups. Distribution of imaging clusters (subtypes) in different 
clinical groups. a) The distribution of all patients in four clusters (subtypes) across three cancer types; b) The distribution of lung cancer patients in four 
clusters (subtypes) across different clinical stage; The molecular subtype distribution in four imaging subtypes for c) breast cancer with luminal A/B, 
Her2 + , and triple negative; d) GBM with different MGMT methylation status.
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Extended Data Fig. 5 | Volcano plot of enrichment scores through single-sample Gene Set Enrichment Analysis (ssGSEA) of 313 proposed imaging 
features in all three cancer types. Volcano plot of enrichment scores through single-sample Gene Set Enrichment Analysis (ssGSEA) of 313 proposed 
imaging features in all three cancer types. a) imaging subtype 1 versus rest, b) subtype 2 versus rest, c) subtype 3 versus rest, and d) subtype 4 versus 
rest. The data for all enrichment scores are plotted as log2 fold change versus the −log10 of the adjusted p-value. Thresholds are shown as dashed lines. 
Pathways deemed as significantly different (false discovery rate or FDR < 0.05) are highlighted with different color schemes.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNaTuRE MaCHInE InTEllIgEnCE ArticlesNaTuRE MaCHInE InTEllIgEnCE

Extended Data Fig. 6 | Evaluation of prognostic value of the four imaging subtypes in lung cancer subgroups. Evaluation of prognostic value of the four 
imaging subtypes in lung cancer subgroups. Kaplan-Meier curves for a) stage I + II; b) Stage III; c) Patients treated with surgery; d) Patients treated with 
radiation.
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Extended Data Fig. 7 | Evaluation of prognostic value of the four imaging subtypes in subgroups within three cancer types. Evaluation of prognostic 
value of the four imaging subtypes in subgroups within three cancer types. Kaplan-Meier curves for lung cancer subgroups: a) EGFR Wild Type; b) EGFR 
Mutant; c) ALK Wild Type; for breast cancer subgroups: d) ER + group; e) HER2 + group; f) Triple Negative (TN) group; for GBM cancer subgroups: g) 
MGMT Methylated group; h) MGMT Unmethylated group; i) IDH1 Wild group.
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Extended Data Fig. 8 | Comparison between the proposed imaging subtypes and conventional radiomics analysis for survival prediction in lung 
cancer cohorts. Comparison between the proposed imaging subtypes and conventional radiomics analysis for survival prediction in lung cancer cohorts. 
a) Details of the final radiomic model; b) Distribution of the radiomic risk score in training and validation cohorts; c) Scatterplot shows the correlation 
between radiomic risk score and tumour size measured in 2D; d) Distribution and comparison of c-index for the radiomic signature and the proposed 
imaging subtypes in the validation cohort.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Oncogenic processes associated with the imaging subtypes in three cancer types. Oncogenic processes associated with the 
imaging subtypes in three cancer types. Limma-modeled enrichment analysis by single-sample Gene Set Enrichment Analysis (ssGSEA) of 50 cancer 
hallmark pathways is applied. Volcano plot of enrichment scores in lung cancer: a) subtype 1 versus rest, and b) subtype 4 versus rest; in breast cancer: 
c) subtype 1 versus rest, and d) subtype 4 versus rest; in GBM: e) subtype 1 versus rest, and f) subtype 4 versus rest. The enrichment scores of 50 cancer 
hallmark pathways are plotted as log2 fold change versus the −log10 of the adjusted p-value. Thresholds are shown as dashed lines. Pathways deemed as 
significantly different (false discovery rate [FDR] < 0.05) are highlighted with different color schemes.
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Extended Data Fig. 10 | Evaluation of imaging subtypes in the advanced lung cancer treated with immunotherapy. Evaluation of imaging subtypes in the 
advanced lung cancer treated with immunotherapy. Kaplan-Meier curves of overall survival stratified by imaging subtype 1 and 2 versus 4.
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