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A B S T R A C T

Background: Clinical histological grading of hepatocellular carcinoma (HCC) differentiation is of great sig-
nificance in clinical diagnoses, treatments, and prognoses. However, it is challenging for radiologists to evaluate
HCC gradings from medical images.
Purpose: In this study, a novel deep neural network was developed by combining the squeeze-and-excitation
networks (SENets) in a three-dimensional (3D) densely connected convolutional network (DenseNet), which is
referred to as a 3D SE-DenseNet, for the classification of HCC grading using enhanced clinical magnetic re-
sonance (MR) images obtained from two different clinical centers.
Method: In the proposed architecture, the SENet was added as an additional layer between the dense blocks of
the 3D DenseNet, to mitigate the impact of feature redundancy. For the HCC grading task, the 3D SE-DenseNet
was trained after data augmentation, and it outperformed the 3D DenseNet based on the clinical dataset.
Results: The quantitative evaluations of the 3D SE-DenseNet on a two-class HCC grading task were conducted
based on the dataset, which included 213 samples of the dynamic enhanced MR images. The proposed 3D SE-
DenseNet demonstrated an accuracy of 83%, when compared with the 72% accuracy of the 3D DenseNet.
Conclusion: Owing to the advantage of useful automatic feature learning by the SE layer, the 3D SE-DenseNet
can simultaneously handle useful feature enhancement and superfluous feature suppression. The quantitative
experiments confirm the excellent performance of the 3D SE-DenseNet in the evaluation of the HCC grading.

1. Introduction

Diagnosis and treatment in the early stages of hepatocellular car-
cinoma (HCC) play a key role in the improvement of the survival rate
[1]. Clinically, HCC grading after operations is subjective and time-
consuming. It is therefore necessary to non-invasively and auto-
matically evaluate the HCC gradings from clinical images prior to op-
erations. In the literature, although several image processing methods
were proposed for the computer-aided diagnosis of liver disease using
different imaging modalities such as liver fat quantification [2], auto-
mated HCC grading methods are insufficient.

In recent years, many machine learning models have been applied
to lesion and tumor classification, wherein the feature extraction is a

critical step. To realize the classification of tumors, the texture features
[3–7], shape features [3], and deep learning features [3,8] are extracted
as classifiers. The abovementioned hand-crafted features have been
widely used in several applications. However, Xu et al. [9] compared
the performances of the manual features and deep learning features for
the classification of tumors, where deep learning features exhibited an
excellent ability to describe the tumor characteristics, and out-
performed the manual texture features.

Classifiers are a major part of tumor classification and grading, i.e.,
the artificial neural network (ANN) [4,10], support vector machine
(SVM) [4,5,8,11–13], extreme learning machine (ELM) [6], random
forests [7], and back propagation neural network (BPNN) [3]. The focus
of several recent researches was on deep features from hybrid models
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for tumor classification [14]. Wang et al. [15] presented a multi-model-
based framework for HCC grading, which achieved an accuracy of 91%.
This framework consisted of an AdaBoost classifier and BPNN classi-
fiers, which were trained by the deep features from a multi-view (axial,
coronal, and sagittal) convolutional neural network (CNN). Li et al. [1]
proposed a composite architecture that combined a multiple fully-
connected CNN with an ELM for HCC nuclei grading. Moreover, this
method achieved an accuracy of 81.1%. These hybrid models are ex-
amples of decision-level fusion methods. However, the complexity of
these multi-model-based methods limits their generalization and ap-
plication to various tasks.

With the rapid development of deep learning, CNN has emerged as a
popular approach for visual pattern recognition tasks [16]. Moreover,
CNN-based methods demonstrate excellent performances in lesion
grading tasks. Bevilacqua et al. [17] proposed a CNN framework trained
by gray level co-occurrence matrix features for HCC grading, which
achieved an average accuracy of 92.8%. Liu et al. [18] presented a
multi-view CNN framework trained by a multi-channel input, which
consisted of different view areas of lung nodules for lung nodule clas-
sification, and it achieved an accuracy of 94%. Ertosun et al. [19]
proposed a CNN-based cascaded classification architecture for the
realization of automated gliomas grading.

However, these CNN-based models for lesion classification and
grading are not sufficiently deep; thus, deep features cannot be effec-
tively extracted. Khawaldeh et al. [20] adopted an Alex Krizhevsky
Network (AlexNet) with a significant depth increase for glioma tumor
grading, which achieved an accuracy of 91% when applied to the MR
images [20]. Recently, several feature fusion methods were proposed to
solve the gradient vanishing problem caused by the depth increase of
networks. Ishikawa et al. [21] adopted the Residual Network (ResNet)
for brain tumor classification from brain cell images. Chang et al. [22]
adopted the ResNet for glioma grading in MR images. He et al. [23]
proposed the ResNet, which re-uses features through skip connection to
overcome the gradient vanishing problem. However, the ResNet simple
re-uses the features and cannot explore new features. At the conference
on Computer Vision and Pattern Recognition (CVPR), 2017, Huang
et al. [24] proposed the Densely Connected Convolutional Networks
(DenseNet) framework, which demonstrated an excellent performance
with respect to image classification based on the exploration of new
features using the dense block. Dey et al. [25] made a comparison be-
tween the DenseNet, basic 3D CNN, and 3D multi-output CNN for the
diagnostic classification of benign and malignant lung nodules; wherein
the DenseNet achieved the highest accuracy of 90.4%.

However, accurate HCC grading in MR images based on the
DenseNet remains a challenging task for the following reason. In the
dense block, each layer is connected to every other layer in a feed-
forward manner, which results in the redundancy of features [26]. To
solve the problem, in this study, a framework termed the 3D SE-Den-
seNet for HCC grading in MR images was developed. The main con-
tributions of this work are as follows. First, the Squeeze-and-Excitation
Networks (SENet) [27] was combined with a 3D DenseNet. The SENet
can effectively enhance useful feature channels and suppress less-useful
feature channels for the HCC grading task, and therefore realize the
adaptive re-calibration of channel-wise feature responses. The combi-
nation can mitigate the impact of feature redundancy and improve the
accuracy by 11%, which slightly increases the training time and
number of parameters. Second, few researchers are currently focused
on the direct application of the deep learning framework to HCC
grading based on medical images. The MR images were associated with
the pathology findings based on the proposed deep learning framework.
An investigation of this association is essential for the computer-aided
study on image diagnoses.

For the HCC grading task, an Edmondson and Steiner system is the
most popular HCC grading system, which divides the HCC into four
grades (from I–IV) based on histological differentiation [28,29]. In
addition to the four-grade system, the HCCs can also be divided into

high grades and low grades, given that most of the HCCs appear as
grade II or III. The high grade includes grades I and II, and the low
grade includes grades III and IV [30].

The rest of the paper is organized as follows. In Section 2, the de-
tailed experimental data and methods are presented, and the proposed
model (3D SE-DenseNet) is described in Subsection 2.2. A discussion on
the grading performance of the 3D SE-DenseNet when applied to MR
images obtained from two clinical centers is presented in Section 3.
Section 4 presents a discussion on the HCC grading performance, fol-
lowed by the conclusions in Section 5.

2. Materials and methods

2.1. Dataset and preprocessing

2.1.1. Dataset
The HCC dataset of the MR images was obtained from The Central

Hospital of Lishui and The Second Affiliated Hospital of Soochow
University. The dataset included 75 patients (66 men and 9 women)
who were subjected to liver partial hepatectomy or needle biopsy. In
the dataset, 37 patients were diagnosed with low-grade HCC, and 38
patients were diagnosed with high-grade HCC. Further details on the
tumor sizes and slice thicknesses are presented in Table 1.

2.1.2. Workflow of 3D SE-DenseNet for HCC grading
The proposed classification workflow is presented in Fig. 1. The

workflow consists of three major steps. The first step is data pre-pro-
cessing for the 3D SE-DenseNet. The second step is data augmentation,
and the third step is the training and testing of the 3D SE-DenseNet.

2.1.3. Data preprocessing
The detailed data pre-processing procedure is described as follows:

(1) Manual tumor delineation: in the dataset, 63 patients have the MR
images of enhanced arterial phase, enhanced venous phase and
enhanced delayed phase. The remaining http://dict.youdao.com/
w/remaining/javascript:void(0); 12 patients only have the MR
images of enhanced arterial phase and enhanced venous phase.
Hence, 213(63 × 3 + 12 × 2) tumor samples were simply
manually segmented. Examples of the tumors in the dynamic en-
hanced MR images are presented in Fig. 2.

(2) Three-dimensional tumor ROI extraction: the smallest cuboid that
can cover the entire tumor was used. The voxels of the tumor in this
cuboid remained the same as the original MR images, and the
background voxels of the non-tumor were set to zero. The example
images are presented in the middle column of Fig. 3.

(3) Normalization: The dimensions of the normalized image size were
set as 200× 200×10 (voxel). The images with sizes less than the
normalized size were padded with zero, and the remaining images
with sizes larger than the normalized size were truncated, to
guarantee that each tumor is located at the center of the normalized
image. After the image size was normalized, the voxel value of the
tumor was also normalized using the Z-score normalization method:
subtraction of the mean and then division by the variance. The

Table 1
Details of HCC dataset.

Grading Low High

Tumor Size ≤3 cm 14 14
3–6 cm 17 10
6–9 cm 6 9
>9 cm 0 5

Slice Thickness 8 mm 23 24
6mm 8 4
3mm 6 10
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example images are presented in the right column of Fig. 3.

2.1.4. Data augmentation
After the data pre-processing, 213 tumor ROIs, which consisted of

75 enhanced arterial phase tumors, 75 enhanced venous phase tumors,
and 63 enhanced delayed phase tumors were made available.
Moreover, 80% of all the tumor ROIs were used as training data, and
the remaining 20% were used as testing data. To increase the number of
training data, several data augmentation methods were adopted. In
particular, each ROI was operated by random translation, random up-
down flip, random left-right flip, and random rotation at a random
angle. With these operations, the number of training data was aug-
mented by a factor of 15. Finally, a total of 2550 training ROIs and 43
testing ROIs were inputted to the 3D SE-DenseNet for the HCC grading
task.

2.2. The proposed model: 3D SE-DenseNet

2.2.1. 3D SE-DenseNet
The proposed framework, as illustrated in Fig. 4, mainly consists of

three dense blocks, two transition layers, and two SE layers. The dense
block is made up of 12 composite functions. The composite function
illustrated in Fig. 5 is defined by four consecutive operations: a batch
normalization (BN), a rectified linear unit (ReLU), a 3 × 3 × 3

convolution layer, and a dropout layer. The BN reduces the internal
covariate shift, which can speed up the training process and increase
the accuracy [31]. The ReLU reduced the probability of the vanishing
gradient [31]. The dropout layer can randomly reduce a branch to
avoid over-fitting [31]. The transition layer illustrated in Fig. 4 is set
between two dense blocks. As shown in Fig. 6, the transition layer
consists of a BN, a ReLU, a 1 × 1 × 1 convolution layer, a dropout
layer, and a 2 × 2 × 2 average pooling layer. As illustrated in Fig. 7,
the SE layer is made up of five consecutive operations: a global average
pooling layer, a fully connected layer, a ReLU, a fully connected layer,
and a sigmoid. The final output of the SE layer is obtained by multi-
plying the input channels with respective weights. In the SE layer, there
is a hyper-parameter ratio, namely, the channel reduction ratio, which
enhances the most important 1/ratio percentage of the feature chan-
nels.

The details of the proposed framework are presented in Table 2. As
can be seen in Table 2, the images are inputted to a 3D convolution
layer with kernel dimensions of 7 × 7 × 7. The following layer is a 3
× 3 × 3 average pooling layer that significantly reduces the com-
putational load of the training process. The number of output channels
for the convolution layer is twice the growth rate. The hyper-parameter
growth rate is the number of output channels for the composite func-
tion. After the first convolution layer and pooling layer, the following
sections are the dense block 1, transition layer 1, SE layer 1, dense block

Fig. 1. Workflow of HCC grading classification.

Fig. 2. HCC tumor MR image patches in the experiment. The three images in the first row are from the same patient diagnosed with low-grade HCC. The three images
in the second row are from the same patient diagnosed with high-grade HCC. Each image presented in this figure is one slice of a 3D image.
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2, transition layer 2, SE layer 2, and dense block 3, successively. Finally,
the feature maps are inputted to the classification layer, which consists
of a global average pooling layer, a fully connected layer, and a softmax
classifier.

2.2.2. The variants of 3D SE-DenseNet
In this paper, the following three methods for combining the SENet

with a 3D DenseNet are proposed. (1) The SE layer is set between the

Fig. 3. Pre-processing step: the three rows present MR
images of the arterial phase, venous phase, and delayed
phase, respectively. The images in the first column dis-
play tumors from the original images. The images in the
second column display tumor ROIs extracted from the
original images. The images in the third column are the
tumor regions of interest (ROIs) obtained from the nor-
malization step (After the Z-score normalization step, the
value of the normalized image voxel is very small. The
value was mapped to the range of 0–255 for the display).

Fig. 4. Framework of 3D-SE-DenseNet.

Fig. 5. Detailed structure of composite function.
Fig. 6. Detailed structure of transition layer.
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dense blocks, which is referred to as a 3D SE-DenseNet, as illustrated in
Fig. 9(a); (2) the SE layer is set within the dense block, which is referred
to as a 3D SE-DenseNet-IN, as illustrated in Fig. 9(b); or (3) the SE layer
is set between and within the dense blocks, which is referred to as a 3D

SE-DenseNet-ALL, as illustrated in Fig. 9(c). The dense block is illu-
strated in Fig. 8(a); and the SE-dense block, wherein the SE layer is set
within the dense block, is illustrated in Fig. 8(b). In addition, the 3D
DenseNet-BC is also combined with the SENet in three such manners, as
follows. (1) The SE layer is set between the dense-BC blocks, which is
referred to as a 3D SE-DenseNet-BC-BE, as illustrated in Fig. 9(d); (2)
the SE layer is set within the dense-BC block, which is referred to as a
3D SE-DenseNet-BC-IN, as illustrated in Fig. 9(e); and (3) the SE layer is
set between and within the dense-BC blocks, which is referred to as a
3D SE-DenseNet-BC-ALL, as illustrated in Fig. 9(f). The dense-BC block
is illustrated in Fig. 8(c); and the SE-dense-BC block, wherein the SE
layer is set within the dense-BC block, is illustrated in Fig. 8(d).

3. Results

All the deep learning networks referred to in the results section were
implemented using a Python tool in the Tensorflow framework. The
computations were run on an Intel Xeon E31220 3.1 GHz PC with
12 GB of random-access memory (RAM) and a NVIDIA GeForce GTX
1080 Ti graphics processing unit (GPU).

3.1. Parameter initialization

To adjust all the 3D tumor ROIs to the same size, the size distributions of

Fig. 7. Detailed structure of SE layer.

Table 2
The architecture of the 3D SE-DenseNet. The growth rate described in the
context is set as 24. Each “Conv.” layer and “scale” layer presented in the table
correspond to the BN–ReLU–3DConvolution–dropout sequence and the global
average pooling–fully connected–ReLU-fully-connected–sigmoid sequence (il-
lustrated in Fig. 7), respectively.

Layers Output Size 3D SE-DenseNet (growth rate= 24)

3D Convolution 10×50×50 7×7×7 Conv. with stride 1× 2×2
Dense Block 1 10×50×50 [3×3×3 Conv.]× 12
Transition Layer 1 10×50×50 1×1×1 Conv.

5×25×25 2×2×2 average pool
SE layer 1 5×25×25 scale×1
Dense Block 2 5×25×25 [3×3×3 Conv.]× 12
Transition Layer 2 5×25×25 1×1×1 Conv.

3×13×13 2×2×2 average pool
SE layer 2 3×13×13 scale×1
Dense Block 3 3×13×13 [3×3×3 Conv.]× 12
Classification Layer 1×1×1 13×13×13 average pooling

– fully connected
– classification and softmax

Fig. 8. The variants of the dense block: (a) dense block, (b) SE-dense block, (c) dense-BC block, and (d) SE-dense-BC block.
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all the 3D tumor ROIs were analyzed in the axial, coronal, and sagittal
directions. The statistical results, as shown in Fig. 10, reveal that the di-
mensions of the tumors were mostly less than 256×256×20 (voxel). To

include the tumor voxels: in this study, the following normalized image
dimensions were set: 256×256×20, 256×256×10, 160×160×40,
and 200×200×10. With the consideration of the hardware

Fig. 9. Variants of 3D SE-DenseNet: (a) dense block, (b, c) SE-dense block, (d) dense-BC block, and (e, f) SE-dense-BC block; as illustrated in Fig. 8(a), (b), (c), and (d),
respectively.
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configuration, the batch size was set as 2, 4, 2, and 10 maximumly. Within a
suitable range, a relatively large batch size results in a good performance,
especially with respect to the training time and convergence precision. If the
dataset is sufficient, the batch size can be set between 1 and several hun-
dreds. For example, 32 is a good default value [32]. By comparing the
training curves (training and validation error with respect to the training
time), the trade-off between the model performance and hardware config-
uration can be realized when the normalized image size and batch size of
the model are set as 200×200×10 and 10, respectively (normalized
image size/accuracy: 256×256×20/69%, 256×256×10/75%,
160×160×40/71%, 200×200×10/83%).

A stochastic gradient [33] was employed as the optimizer in the
training procedure. Given the limitation of the RAM and GPU memory,
the number of training data was augmented to a number greater than
the original number by a factor of 15, the dimensions of the ROI
(width×height× length) were set as 200× 200×10, and the re-
spective batch size was set as 10. The growth rate, depth of the model,
and ratio of the SE layer are presented in Table 3. In the evaluations, the
growth rate was limited to a small integer such as 24, to prevent the
excessively rapid growth of the 3D DenseNet [31]. Moreover, the in-
crease in the sample sensitivity and parameter number with an increase
in the depth may cause over-fitting. In the experiments, the results at
different depths (20, 30, 40, and 50) were compared. With the excep-
tion of the hyper-parameters, the keep probability in dropout layer was
set as 0.5. The value of the weight decay was determined according to a
rule: the weight decay multiplying L2 Regularization Item loss should
be in the same order of magnitude as the cross entropy. The training
epoch was set as 70 and the initial learning rate was 0.1. A decrease in
the initial learning rate to 0.01 from 35th epoch and 0.001 from 52nd
epoch was expected.

3.2. Performance of 3D SE-DenseNet

A comparison was made between the proposed 3D SE-DenseNet, 3D
DenseNet [24], 3D ResNet [22], and 3D AlexNet [20] with respect to
several parameters, which included the recall, precision, area under
curve (AUC), F1-score, Matthews correlation coefficient (MCC), geo-
metric mean (G-Mean), and accuracy. Moreover, 10 five-fold cross-va-
lidation procedures were carried out. In particular, 20% of all the tumor
ROIs (total ROI count of 213) were used as testing samples, and the
remaining 80% were used as training samples in each cross-validation
procedure.

A comparison of the cross-validation results for the SE-DenseNet,
DenseNet, ResNet, and AlexNet is presented in Table 4. The 3D SE-
DenseNet (83%) and 3D DenseNet (72%) both outperformed the 3D
ResNet (70%) and 3D AlexNet (56%). Moreover, the 3D SE-DenseNet
achieved an accuracy of 83%, which exceeded that of the 3D DenseNet
(72%) by 11%. The clear improvement indicates that the 3D SE-Den-
seNet can increase the parameter efficiency and reduce over-fitting.

Magnetic resonance images generally contain noise and several ar-
tifacts. In the data pre-processing step, there is no noise reduction op-
eration. Therefore, the data inputted to the SE-DenseNet contains noise.
Moreover, to quantitatively evaluate the performance of the method in
the presence of noise, Gaussian noise and pepper-and-salt noise were
added to the original data. With Gaussian noise, the parameters of the
mean and variance were 0 and 0.01, respectively. With the pepper-and-
salt noise, the proportion of the image pixels replaced with noise was
set as 0.05, and the proportion of salt noise with respect to pepper noise
was set as 0.5. The comparison of the results between the original data
and noisy data is presented in Table 5. The small decrease in accuracy
(4% for Gaussian noise and 4% for the pepper-and-salt noise when
compared with the original data) indicates that the proposed 3D SE-
DenseNet is relatively stable when subject to data that contains noise.

3.3. Comparison between different variants of 3D SE-DenseNet

In this subsection, several cross-validation procedures were con-
sidered to compare the HCC grading performances of variant models
derived from the 3D DenseNet. All the comparison results are presented
in Table 6. As can be seen in Table 6, the image classification perfor-
mances and training costs of all the models were evaluated. With re-
spect to the training cost, the focus was on the training speed (running
time) and memory cost (depth and parameters). The standard for the
image classification performance included the recall, precision, AUC,

Fig. 10. Distribution of tumor size in axial, coronal, and sagittal directions.

Table 3
Basic parameters of 3D SE-DenseNet.

Hyper-parameters Value

Image size/Batch size (200, 200, 10)/10
Keep probability 0.5
Depth/weight decay 20/0.0001; 30/0.0001; 40/0.0001; 50/0.00001
Growth rate 24
Ratio of the SENet 2

Table 4
Results of the comparison between the 3D SE-DenseNet, 3D DenseNet, 3D ResNet, and 3D AlexNet. Each result is reported in the form of mean ± standard deviation.
The bold is the line with the highest accuracy.

Model Recall Precision AUC F1-score MCC G-Mean Accuracy

SE-DenseNet 0.79 ± 0.034 0.80 ± 0.033 0.83 ± 0.029 0.79 ± 0.036 0.59 ± 0.069 0.78 ± 0.047 0.83 ± 0.028
DenseNet [24] 0.68 ± 0.067 0.73 ± 0.028 0.79 ± 0.032 0.66 ± 0.092 0.41 ± 0.075 0.64 ± 0.105 0.72 ± 0.049
ResNet [22] 0.67 ± 0.048 0.68 ± 0.048 0.74 ± 0.050 0.66 ± 0.053 0.35 ± 0.099 0.65 ± 0.063 0.70 ± 0.052
AlexNet [20] 0.55 ± 0.043 0.61 ± 0.067 0.58 ± 0.052 0.50 ± 0.088 0.15 ± 0.071 0.43 ± 0.153 0.56 ± 0.044
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F1-score, MCC, G-Mean, and accuracy.
The results of the 3D DenseNet and 3D DenseNet-BC were com-

pared, as presented in Table 6 and Fig. 11. Overall, the accuracy of the
3D DenseNet was superior to that of the 3D DenseNet-BC (72% and 66%
at a depth of 40; and 69% and 61% at a depth of 30, respectively),
despite the higher training cost. Therefore, for the HCC grading task,
the 3D DenseNet is more appropriate.

As shown in Table 6 and Fig. 12, given that the SENet is added to the
DenseNet, the stability and convergence of the improved DenseNet
were superior to those of the DenseNet at the expense of a small in-
crease in the training time and number of parameters. With the com-
bination of the SENet and the DenseNet, changes in the image classi-
fication performance and the training cost were observed, as follows.
(1) The increase in accuracy ranged from 3 to 11% at a depth of 40, and
from 5 to 11% at a depth of 30; (2) the number of parameters maxi-
mally increased from 11.5M to 12.8M at a depth of 40, and from 5.3M
to 6.0M at a depth of 30, respectively; and (3) the increase rate of the
training time was less than 10%. In general, the relatively small

increase in the training time and memory cost indicates that the per-
formance improvement induced by the SE layer was computationally
efficient and resulted in an excellent performance. Similarly, for the
combination of the SENet with the DenseNet-BC, the performance of
the improved DenseNet-BC for HCC grading was improved at the cost of
an increase in the training time and the number of parameters. The
abovementioned experimental results indicate that the SENet improves
the performance of the 3D DenseNet and 3D DenseNet-BC. In summary,
the novel scheme presented in this paper is based on the 3D DenseNet
with respect to accuracy.

To evaluate the best method of combining the SENet with a 3D
DenseNet, the performance of the 3D SE-DenseNet was compared with
those of its variants, namely, the 3D SE-DenseNet-IN and 3D SE-
DenseNet-ALL, as shown in Table 6. Moreover, the curves of the ac-
curacy with respect to the training epoch are further presented in
Fig. 13. From the experimental results, the accuracy of the 3D SE-
DenseNet was found to be the highest among the three models, namely,
the 3D SE-DenseNet, 3D SE-DenseNet-IN, and 3D SE-DenseNet-ALL

Table 5
Performance comparison results for 3D SE-DenseNet using data that contains noise. Each result is reported in the form of mean ± standard deviation.

Input Recall Precision AUC F1-score MCC G-Mean Accuracy

Original data 0.79 ± 0.034 0.80 ± 0.033 0.83 ± 0.029 0.79 ± 0.036 0.59 ± 0.069 0.78 ± 0.047 0.83 ± 0.028
Original data + Gaussian 0.75 ± 0.031 0.75 ± 0.030 0.80 ± 0.027 0.75 ± 0.032 0.51 ± 0.062 0.75 ± 0.034 0.79 ± 0.026
Original data + Pepper and Salt 0.76 ± 0.038 0.77 ± 0.049 0.82 ± 0.050 0.76 ± 0.036 0.54 ± 0.086 0.76 ± 0.036 0.79 ± 0.031

Table 6
Results of the comparison between all the architectures at different depths. Sub-table (a) is for a depth of 40, and Sub-table (b) is for a depth of 30. Each result is
reported in the form of mean ± standard deviation. The bold is the line with the highest accuracy.

Model Running time Parameters Recall Precision AUC F1-score MCC G-Mean Accuracy

(a)
DenseNet 6h16 11.5M 0.68 ± 0.067 0.73 ± 0.028 0.79 ± 0.032 0.66 ± 0.092 0.41 ± 0.075 0.64 ± 0.105 0.72 ± 0.049
SE-DenseNet 6h25 12.8M 0.79 ± 0.034 0.80 ± 0.033 0.83 ± 0.029 0.79 ± 0.036 0.59 ± 0.069 0.78 ± 0.047 0.83 ± 0.028
SE-DenseNet-IN 6h37 11.5M 0.73 ± 0.035 0.73 ± 0.038 0.76 ± 0.057 0.73 ± 0.035 0.46 ± 0.073 0.73 ± 0.034 0.75 ± 0.059
SE-DenseNet-ALL 6h39 12.8M 0.73 ± 0.086 0.74 ± 0.093 0.77 ± 0.085 0.73 ± 0.088 0.46 ± 0.177 0.72 ± 0.092 0.77 ± 0.069
DenseNet-BC 2h43 1.4M 0.64 ± 0.065 0.69 ± 0.055 0.69 ± 0.090 0.61 ± 0.097 0.31 ± 0.105 0.56 ± 0.136 0.66 ± 0.090
SE-DenseNet-BC-BE 2h44 1.5M 0.68 ± 0.056 0.70 ± 0.051 0.76 ± 0.048 0.66 ± 0.079 0.36 ± 0.122 0.62 ± 0.116 0.68 ± 0.103
SE-DenseNet-BC-IN 2h53 1.5M 0.67 ± 0.063 0.73 ± 0.054 0.74 ± 0.073 0.64 ± 0.096 0.38 ± 0.116 0.60 ± 0.154 0.67 ± 0.104
SE-DenseNet-BC-ALL 2h54 1.6M 0.69 ± 0.076 0.72 ± 0.078 0.78 ± 0.061 0.67 ± 0.093 0.38 ± 0.153 0.63 ± 0.127 0.71 ± 0.098
(b)
DenseNet 3h16 5.3M 0.66 ± 0.041 0.71 ± 0.041 0.78 ± 0.034 0.64 ± 0.064 0.36 ± 0.069 0.61 ± 0.088 0.69 ± 0.082
SE-DenseNet 3h20 6.0M 0.76 ± 0.047 0.77 ± 0.034 0.81 ± 0.046 0.75 ± 0.053 0.53 ± 0.068 0.75 ± 0.053 0.80 ± 0.040
SE-DenseNet-IN 3h30 5.3M 0.71 ± 0.044 0.72 ± 0.049 0.76 ± 0.050 0.71 ± 0.044 0.43 ± 0.093 0.70 ± 0.044 0.74 ± 0.045
SE-DenseNet-ALL 3h34 6.0M 0.73 ± 0.040 0.73 ± 0.045 0.77 ± 0.038 0.73 ± 0.040 0.46 ± 0.087 0.73 ± 0.044 0.77 ± 0.036
DenseNet-BC 1h49 0.9M 0.59 ± 0.062 0.73 ± 0.054 0.66 ± 0.065 0.50 ± 0.109 0.23 ± 0.071 0.39 ± 0.172 0.61 ± 0.085
SE-DenseNet-BC-BE 1h50 1.0M 0.70 ± 0.065 0.74 ± 0.041 0.80 ± 0.037 0.68 ± 0.093 0.42 ± 0.107 0.63 ± 0.132 0.71 ± 0.081
SE-DenseNet-BC-IN 1h56 1.0M 0.63 ± 0.075 0.66 ± 0.078 0.71 ± 0.087 0.62 ± 0.082 0.29 ± 0.137 0.60 ± 0.076 0.64 ± 0.115
SE-DenseNet-BC-ALL 1h58 1.0M 0.69 ± 0.057 0.72 ± 0.066 0.78 ± 0.059 0.67 ± 0.075 0.39 ± 0.130 0.64 ± 0.107 0.73 ± 0.067

Fig. 11. Accuracy of 3D DenseNet and 3D DenseNet-BC at different depths. The figure on the left is for a depth of 30, and the figure on the right one is for a depth of
40. The curves of the accuracy with respect to the training epoch are described.
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(83%, 75%, and 77% at a depth of 40; and 80%, 74%, and 77% at a
depth of 30, respectively). In addition, the number of parameters of the
3D SE-DenseNet and 3D SE-DenseNet-ALL were similar; however, the

performance of the 3D SE-DenseNet was superior to that of the 3D SE-
DenseNet-ALL with less training time. Compared with the 3D SE-Den-
seNet-IN, the performance of the 3D SE-DenseNet was significantly

Fig. 12. Accuracy of different models. The two graphs in the first row present accuracy curves of the 3D DenseNet, 3D SE-DenseNet, 3D SE-DenseNet-IN, and 3D SE-
DenseNet-ALL at different depths: the graph on the left is for a depth of 30, and the graph on the right is for a depth of 40. The two graphs in the second row present
accuracy curves of the 3D DenseNet-BC, 3D SE-DenseNet-BC-BE, 3D SE-DenseNet-BC-IN, and 3D SE-DenseNet-BC-ALL at different depths: the graph on the left one is
for a depth of 30, and the graph on the right is for a depth of 40. The curves of the accuracy with respect to the training epoch confirm the superior performance of the
SENet.

Fig. 13. Accuracy of the 3D SE-DenseNet, 3D SE-DenseNet-IN, and 3D SE-DenseNet-ALL at different depths. The graph on the left is for a depth of 30, and the graph
on the right is for a depth of 40. The curves of the accuracy with respect to the training epoch reveal that the performance of the SE-DenseNet was the best among all
the other models.

Table 7
Comparison of 3D SE-DenseNet performance at different depths. Each result is reported in the form of mean ± standard deviation. The bold is the line with the
highest accuracy.

Depth Running time Parameters Recall Precision AUC F1-score MCC G-Mean Accuracy

20 1h46 2.5M 0.75 ± 0.043 0.75 ± 0.049 0.81 ± 0.052 0.74 ± 0.043 0.50 ± 0.095 0.74 ± 0.048 0.78 ± 0.036
30 3h20 6.0M 0.76 ± 0.047 0.77 ± 0.034 0.81 ± 0.046 0.75 ± 0.053 0.53 ± 0.068 0.75 ± 0.053 0.80 ± 0.040
40 6h25 12.8M 0.79 ± 0.034 0.80 ± 0.033 0.83 ± 0.029 0.79 ± 0.036 0.59 ± 0.069 0.78 ± 0.047 0.83 ± 0.028
50 10h5 19.7M 0.72 ± 0.054 0.72 ± 0.055 0.76 ± 0.074 0.71 ± 0.055 0.44 ± 0.113 0.71 ± 0.060 0.74 ± 0.052
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better, at the expense of a small increase in the training time and the
number of parameters. With respect to the AUC, the stability of the 3D
SE-DenseNet was the best among the three models, as confirmed by
Fig. 13. The experimental results indicate that the placement of the SE
layer between the dense blocks is more advantageous than that within
the dense block. The proposed framework therefore employs the
method of adding the SE layer between the dense blocks.

Moreover, the results of the 3D SE-DenseNet at different depths
were compared, as shown in Table 7 and Fig. 14. The accuracy of 3D
SE-DenseNet was 78% at a depth of 20, 80% at a depth of 30, 83% at a
depth of 40, and 74% at a depth of 50. The number of parameters was
2.5M at a depth of 20, 6.0M at a depth of 30, 12.8M at a depth of 40,
and 19.7M at a depth of 50. The depth of the proposed framework was
then set as 40, to obtain the best performance for HCC grading.

4. Discussion

In the proposed 3D SE-DenseNet architecture for HCC grading tasks
in dynamic enhanced MR imaging, the SENet was set between the dense
blocks of the DenseNet. In the dense block, each layer is connected to all
the other layers in a feed-forward manner, which allows for the ex-
traction of new features based on the features of previous layers.
However, the feature redundancy in the process of feature fusion is a
major issue. Due to the advantage of useful automatic feature learning
in the SENet, the 3D SE-DenseNet can suppress superfluous features,
which mitigates the impact of feature redundancy to a certain extent
and improves the performance for HCC grading tasks. The total training
process of the 3D SE-DenseNet required 375min for 70 epochs.

Based on the experimental results, the performance of 3D DenseNet
is superior to that of the 3D DenseNet-BC for HCC grading tasks.
Moreover, the feature dimension reduction in the 3D DenseNet-BC may
not sufficiently and effectively extract the characteristics of the HCC
differentiation. In addition, the benefits of the SENet both in the 3D
DenseNet and 3D DenseNet-BC were confirmed. In section 3.2, the su-
perior accuracy of the 3D SE-DenseNet over the 3D DenseNet was
confirmed with respect to the HCC grading performance, at the cost of a
small increase in the training time and memory. In addition to the
DenseNet, the proposed SE-DenseNet outperformed the ResNet and the
AlexNet, as described in Table 4. However, as can be seen in Fig. 13, the
advantage of positioning the SE layer within the dense block was not as
significant as that between the dense blocks. The SE layer within the
dense block takes a weight learning of features in the procedure of
exploring new features, which may cause over-fitting, and the SE layer
between the dense blocks can enhance useful features and suppress
superfluous features for HCC grading after the extraction of new fea-
tures; which may have led to the more significant improvement of the
3D SE-DenseNet performance when compared with that of the 3D SE-
DenseNet-IN.

In this study, there were two limitations. First, the quantity and
quality of the dataset obtained from both clinic centers were limited. As
can be seen in Table 1, the slice thicknesses of the most of the data were
larger than 5mm, which may cause a loss in the representation in-
formation of tumors. However, the proposed model can be applied to
low-quality clinical images. Therefore, in future work, more MR images
of the HCC patients should be collected. Second, the tumor ROIs were
manually drawn, which is a time-consuming task, especially with re-
spect to 3D medical images.

5. Conclusion

In this paper, a new model termed the 3D SE-DenseNet was pro-
posed for HCC grading tasks in MR images. The experimental results
reveal that the proposed model demonstrates a better performance than
those of the 3D DenseNet and 3D DenseNet-BC. Moreover, it was con-
firmed that the SE layer helps fuse feature maps and improves the HCC
grading performance of the 3D DenseNet. In addition, the proposed
model performed well when applied to clinical MR images with slice
thicknesses larger than 5mm. It is therefore feasible to classify the
histological HCC grading in dynamic enhanced clinical MR images,
which provides a valuable reference for clinic diagnoses, treatments,
and prognoses.
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