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a b s t r a c t 

Histogram based image enhancement techniques are widely used for performing contrast enhancement 

in images. However, most histogram based image enhancement methods have insufficient capability to 

freely tune the brightness and contrast of enhanced image. In this paper, two novel histogram based 

image enhancement algorithms are proposed. The proposed algorithms provide the way to control the 

brightness and contrast of enhanced image by adjusting two parameters. The principles for parameter 

selection are also discussed in this paper. Experimental results demonstrate a better performance of the 

proposed methods in both perceptual quality and image quality assessment metrics than the existing 

histogram based methods. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

a  

s  

a  

p  

t  

i  

o  

[  

l  

o  

d  

t  

t  

t  

i  

t  

o  

t  

t  

a

 

n  

i  

g  

i  

h  

p  

o  

o  

t  

e  

e  

c  

t

2  

h  

i  

i  

o  

t  

e

 

t  

h

0

. Introduction 

Image enhancement that improves the visual effect of the im-

ge is an important image pre-processing technique in machine vi-

ion applications. Brightness and contrast [9] are two distinctive

nd objective image quality metrics in image enhancement. In the

ast few years, several methods have been introduced to improve

he contrast of an image. These methods can be broadly divided

nto two groups: direct method and indirect methods. Direct meth-

ds define a contrast measure and find a solution to improve it

10–13] . While indirect methods enhance the contrast through en-

arging the dynamic range of pixel values or specified region with-

ut defining a contrast measure. Indirect methods can further be

ivided into two sub-groups: 1) decomposition based and, 2) his-

ogram based techniques [14] . Decomposition based techniques at-

empt to recover the intrinsic properties or find representations of

he input image [1,6] . On this basis, the input image is decomposed

nto different components. Through modifying the magnitude of

he desired decomposed component, the enhanced image can be

btained. Low-rank methods are widely used in data decomposi-

ion, and it is an efficiency way in performing image reconstruc-

ion [2–5] . The learning based sparse representation methods are

lso widely used in image decomposition [6–8] . 
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Since the simplicity and high efficiency, histogram-based tech-

iques are widely used in image enhancement. Histogram based

mage enhancement techniques can be divided into two cate-

ories, histogram equalization and specification. Histogram equal-

zation aims to find a transformation so that the output image

as a uniform histogram [14] . When image enhancement is ap-

lied on local regions, some local histogram equalization meth-

ds are developed [15–18] . The local histogram equalization meth-

ds use a small window that slips through every pixel sequen-

ially and the histogram of current position within a window is

qualized. Local histogram equalization methods sometimes over

nhance some regions of the image and produce undesirable

heckerboard effects. In order to improve the performance of his-

ogram equalization, some bi-histogram and multi-histogram [19–

2] equalization methods have been introduced. The bi and multi-

istogram equalization methods split the input image histogram

nto two or more sub-histograms, then those sub-histograms are

ndependently equalized. Although these image equalization meth-

ds can achieve satisfactory contrast enhancement, the varia-

ion in the gray level distribution may result in annoying side

ffects [24] . 

Histogram specification (matching) is the approach to transform

he input image into a similar image that has a pre-specified or

esired shape of histogram. More generally, histogram equalization

s a special case of histogram specification when the desired his-

ogram is uniform distributed. Various global histogram specifica-

ion methods have been proposed to specify the histogram of an
trollable image enhancement based on histogram specification, 
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input image. Gonzalez et al. [14] provided the conventional his-

togram specification algorithm. Rolland et al. [25] introduced the

optimal cumulative distribution function matching algorithm for

fast histogram specification. Sun et al. [26] proposed dynamic his-

togram specification algorithm to keep the histogram characteris-

tics of the input image. On this basis, the exact histogram specifi-

cation algorithms [27–29] are further proposed to transform the

histogram of the input image exactly to the desired one. Com-

pared to global histogram specification methods, the local his-

togram specification can avoid the problem of seeking the de-

sired histogram for the entire image. Therefore, some local his-

togram specification algorithms [30–32] applied the global his-

togram specification in local regions to produce favorable image

qualities. Similar with the local histogram equalization algorithms,

the computational complexity and undesirable checkerboard ef-

fects still are the problems that local histogram specification al-

gorithms faced. The two dimensional histogram can counts the

pairs of adjacent pixels with gray levels and represent the gray

level difference between the pixels of an input image and their

neighbors [23] . Recently, by using the mutual information between

each pixel and its neighboring pixels, two dimensional histogram

equalization (2-D HE) [24] and specification [33] algorithms have

been developed and have shown superiority in image contrast

enhancement. 

All the aforementioned approaches enhanced the brightness

and contrast of the input image automatically. However, in some

image enhancement applications, particularly in consumer elec-

tronics, users always want the brightness and contrast of enhanced

image be controllable, e.g. restraining the brightness and enhanc-

ing image contrast for power saving. Is it possible to employ the

histogram based image enhancement technologies to satisfy this

requirement? Moreover, can we attach the spatial information in

images histogram to make the enhanced image has more details

on the basis of above requirement? In this paper, we introduce

the 2-D histogram to provide contextual information around each

pixel and use 1-D and 2-D Gaussian distribution as desired his-

togram in specification. We tune the brightness and contrast of

enhanced image by involving two parameters to adjust the shape

of probability density function of 1-D and 2-D Gaussian distribu-

tion. The proposed algorithm firstly calculates the original mean

and variance of the histogram of the input image. Secondly, two

parameters are introduced to tune the mean and variance by mul-

tiplication. Thirdly, the desired 1-D and 2-D Gaussian distributions

are estimated by the tuned mean and variance. At last, we use

the probability density functions of desired 1-D and 2-D Gaus-

sian distribution to specify the original 1-D and 2-D histogram

respectively, and finally get the enhanced image. Compared with

several state-of-the-art histogram based image enhancement algo-

rithms, the proposed algorithms not only produce better perfor-

mance in both visual effect and image quality assessment metric,

but also provide an approach for users to tune the brightness and

contrast of enhanced image by adjusting two parameters. More-

over, in some non-manual intervention applications, the two con-

trollable parameters can be automatically estimated by the envi-

ronment brightness or which achieve the highest image quality

assessment. 

The rest of the paper is organized as follows. Section 2 presents

the 1-D and 2-D histogram specification algorithms using 1-D and

2-D Gaussian distribution. The connection between these two al-

gorithms is also discussed in this section. Section 3 verifies the

brightness and contrast controllability of the proposed methods.

The subjective and quantitative comparisons of the proposed al-

gorithm with several state-of-the-art histogram based image en-

hancement techniques are provided in this section. The discus-

sion on parameters selecting is also provided in this section.

Section 4 concludes the paper. 
Please cite this article as: B. Xiao et al., Brightness and contrast con
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. Proposed algorithms 

.1. 1-D histogram specification (1-D HS) 

Consider an input image X = { x (i, j) | 1 ≤ i ≤ M, 1 ≤ j ≤ N} and

ssume that has a dynamic range of [ x min , x max ] (i.e. x ( i, j ) ∈ [ x min ,

 max ]. The main objective of the proposed algorithm is to generate

n enhanced image Y = { y (i, j) | 1 ≤ i ≤ M, 1 ≤ j ≤ N} and y (i, j) ∈
0 , Z + ] , which has a better visual quality than X . 

Let χ = { x 1 , x 2 , ...., x k } be the sorted of k distinct gray-levels

f the input image X and satisfies x 1 < x 2 < ��� < x k , x 1 = x min , x k =
 max , thus, the 1-D histogram can be expressed as 

 x = { h x (m ) | m = 1 , ..., k } (1)

here h x (m ) ∈ R 

+ is computed as 

 x (m ) = 

scr(m ) / k ∑ 

i =1 

scr( x k ) 
(2)

ith scr ( m ) denotes the number of the pixels of gray-level m in the

hole image. Fig. 1 (a) and (b) shows the “Lena” image and its 1-D

istogram according to Eq. (2) . Based on the histogram, the mean

alue of the gray-level of the input image is 

 = 

k ∑ 

i =1 

x i h x ( x i ) (3)

nd the variance of the gray-level of the input image is 

 = 

[ 

k ∑ 

i =1 

( x i − a ) 
2 
h x ( x i ) 

] 1 / 2 

(4)

oreover, since image histograms are samples of probability dis-

ribution function, for a given 1-D histogram h x ( m ) in Eq. (2) , the

umulative distribution can be obtained as 

 x = { p x (m ) | m = 1 , ..., k } (5)

here 

p x (m ) = 

m ∑ 

i =1 

h x (i ) (6)

For a given output image Y = { y (i, j) | 1 ≤ i ≤ M, 1 ≤ j ≤ N} , and

ssume that Y has a dynamic range of [ y min , y max ]. Let γ =
 y 1 , y 2 . . . y l } be the sorted set of l distinct gray-levels of the output

mage, and satisfies y 1 < y 2 < · · · y l , y 1 = y min , y l = y max . In order to

ap the elements of χ to the elements of γ , one needs to find

 1-D density function and cumulatively histogram. In this section,

e use probability density function of 1-D Gaussian distribution as

he desired distribution/histogram 

 t = h t (m 

′ ) = 

1 √ 

2 πk 2 u 

e 
− (m ′ −k 1 a ) 

2 

2(k 2 u ) 
2 | m 

′ = 1 , ..., l (7)

rom Eq. (7) , we can find that, the mathematical expectation and

ariance of desired distribution are set as k 1 a and k 2 u , with a and

 denote the mean and variance of the histogram of the input im-

ge defined in Eqs. (3) and (4) respectively. k 1 and k 2 are the two

arameters that control the mathematical expectation and variance

f desired histogram in Eq. (7) . Consequently, the desired cumula-

ive distribution function obtained by the desired probability dis-

ribution function h t ( m 

′ ) can be written as 

 t = { p t (m 

′ ) | m 

′ = 1 , . . . , l} (8)

here 

p t (m 

′ ) = 

m 

′ ∑ 

i =1 

h t (i ) (9)
trollable image enhancement based on histogram specification, 

dell
文本框
scr（m）表示整个图像中灰度级m的像素数
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(d)(c)(b)(a)

Fig. 1. The “Lena” image (a) and its 1-D histogram (b), as well as its 2-D histogram with w = 1 (c) and w = 3 (d). 

A  

i  

o  

t  

g  

a

m

B  

i  

h  

i

A

I

 

 

 

 

2

 

{  

i  

i

H

w

h

w

I  

a  

k  

c  

j

φ

F  

c  

H  

f  

a  

v

H

S  

m

P

w

a

P

w

A  

b  

x  

t  

l  

g

ccording to the Single Mapping Law (SML) [14] in histogram spec-

fication, the gray-levels of the input image are transformed to the

utput gray-levels for a given output range of [ y min , y max ] using

he cumulative distribution functions p x ( m ) and p t ( m 

′ ). The input

ray-level x m 

is mapped to the output gray-level y m 

′ , by finding

n index m 

′ for a given index m according to: 

 

′ = arg min 

i ∈{ 1 , 2 , ... ,L } 
| p x (m ) − p t (i ) | (10) 

y using Eq. (10) , each distinct gray-level of the input image X

s mapped to a corresponding output gray-level to create an en-

anced output image Y . The corresponding algorithm is provided

n Algorithm 1 . 

lgorithm 1 1D-HS. 

nput: input image X , parameters k 1 , k 2 
Output: output image Y 

1: Initialize expectation a = 0 , variance u = 0 , image histogram h ,

destination histogram dest , enhanced image Y , pixel intensity y

2: compute the histogram h by Eq. (2) 

3: for each pixel intensity m in X do 

4: a := m · h (m ) + a 

5: for each pixel intensity m in X do 

6: u := (m − a ) 2 · h (m ) + u 

7: u := u × k 2 , a := a × k 1 
8: compute the destination histogram dest by Eq. (7) 

9: compute the cumulative distribution functions p t (m 

′ ) of desti-

nation histogram by Eq. (9) 

10: compute the cumulative distribution functions p x (m ) of his-

togram of input image by Eq. (6) 

11: for each pixel intensity m in X do 

12: y (m 

′ ) := min (abs (p t (m 

′ ) − p x (m ))) 

13: for each pixel intensity m in X do 

14: for each row do 

15: for each column do 

16: if X(row, column ) is equal to m then 

17: Y (row, column ) := y (m 

′ ) 
18: return Y 

.2. 2-D histogram specification (2-D HS) 

Similar with 1-D histogram defined in Section 2.1 , letting χ =
 x 1 , x 2 , . . . , x k } be the sorted of k distinct gray-levels of the input

mage X = { x (i, j) | 1 ≤ i ≤ M, 1 ≤ j ≤ N} , the 2-D histogram of the

nput image can be defined as 

 x = { h x (m, n ) | m = 1 , . . . , k ; n = 1 , . . . , k } (11) 
Please cite this article as: B. Xiao et al., Brightness and contrast con
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here h x (m, n ) ∈ R 

+ is computed as: 

 x (m, n ) = 

scr w 

(m, n ) ∑ k 
i =1 

∑ k 
j=1 scr w 

(i, j) 
(12) 

ith 

scr w 

(m, n ) = 

∑ 

∀ i 
∑ 

∀ j 
∑ [ w/ 2] 

k = −[ w/ 2] 

∑ [ w/ 2] 

l= −[ w/ 2] 
φm,n (x (i, j) , 

x (i + k, j + l))(| x m 

− x n | + 1) 
(13) 

n Eq. (13) , w is an odd integer number introduced for determining

 square w × w neighborhood around each pixel. φm,n (x (i, j) , x (i +
, j + l)) ∈ { 0 , 1 } is a binary function involved in identifying the oc-

urrence of the gray-levels x m 

and x n at the spatial locations of ( i,

 ) and (i + j, j + l) 

m,n (x (i, j) , x (i + k, j + l)) = 

{ 

1 if x m 

= x (i, j) and 

x n = x (i + k, j + l) 
0 otherwise 

(14) 

ig. 1 (c) and (d) shows the 2-D histogram of the Lena image ac-

ording to Eq. (12) with w = 1 and 3 respectively. Similar with 1-D

S defined in the above subsection, we use the probability density

unction of 2-D Gaussian distribution as the desired histogram, and

lso introduce two parameters k 1 and k 2 to control the mean and

ariance of 2-D Gaussian distribution 

 t = h t (m 

′ , n ′ ) = 

1 

2 π(k 2 u ) 
2 

e 
− (m ′ −k 1 a ) 

2 + (n ′ −k 1 a ) 
2 

2 ( k 2 u ) 
2 | m 

′ = 1 , . . . , l; n ′ = 1 , . . . , l 

(15) 

ubstituting Eq. (15) to Eqs. (5) and (8) , the corresponding 2-D cu-

ulative distribution function can be written as 

 x = { p x (m ) | m = 1 , . . . , k } (16) 

here 

p x (m ) = 

m ∑ 

i =1 

k ∑ 

j=1 

h x (i, j) (17) 

nd the desired probability distribution function 

 t = { p t (m 

′ ) | m 

′ = 1 , . . . , l} (18) 

here 

p t (m 

′ ) = 

m ′ ∑ 

i =1 

l ∑ 

j=1 

h t (i, j) (19) 

t last, by replacing P x and P t with the above 2-D cumulative distri-

ution functions in SML (defined in Eq. (10) ), the input gray-level

 m is mapped to the output gray-level y m . Each distinct gray-level of

he input image X is transformed to a corresponding output gray-

evel to create an enhanced/output image Y . The corresponding al-

orithm is provided in Algorithm 2 . 
trollable image enhancement based on histogram specification, 
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Algorithm 2 2D-HS. 

Input: input image X , parameters k 1 , k 2 
Output: output image Y 

1: Initialize expectation a = 0 , variance u = 0 , two-dimensional 

image histogram h 2 , image window size w , destination his- 

togram dest , enhanced image Y , pixel intensity y 

2: compute the histogram h by Eq. (2) 

3: for each pixel intensity m in X do 

4: a := m · h (m ) + a 

5: for each pixel intensity m in X do 

6: u := (m − a ) 2 · h (m ) + u 

7: u := u × k 2 , a := a × k 1 
8: compute the two-dimensional image histogram h 2 by Eq. (12) 

9: compute the destination histogram dest by Eq. (15) 

10: compute the cumulative distribution functions p t (m 

′ ) of desti- 

nation histogram by Eq. (19) 

11: compute the cumulative distribution functions p x (m ) of his- 

togram of input image by Eq. (16) 

12: for each pixel intensity m in X do 

13: y (m 

′ ) := min (abs (p t (m 

′ ) − p x (m ))) 

14: for each pixel intensity m in X do 

15: for each row do 

16: for each column do 

17: if X(row, column ) is equal to m then 

18: Y (row, column ) := y (m 

′ ) 
19: return Y 
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2.3. The connection between 1D-HS and 2-D HS 

From Eqs. (7) and (15) , we can have the conclusion that, by con-

trolling the mean and variance of the histogram of output image,

parameters k 1 and k 2 can tune the brightness and contrast of out-

put image in both 1-D HS and 2-D HS. If k 1 and k 2 are larger than

1, the brightness and contrast of output image are enhanced, oth-

erwise, the brightness and contrast of output image are restrained.

There is an extra parameter w in 2-D HS defined in Eq. (12) .

From Fig. 1 , it can be seen that the diagonal of Fig. 1 (c) (i.e., 2-

D histogram with w = 1 ) has the same distribution with Fig. 1 (b)

(i.e., 1-D histogram). Thus, the 2-D histogram is equivalent to the

1-D histogram when w = 1 . This means that, when w = 1 , the 2-D

HS will have the same effect with 1-D HS. Moreover, From Eq. (13) ,

we can find that, the value of w associates with the contextual in-

formation utilization and computation time in 2-D HS. The larger

value of parameter w is, the more contextual information is uti-

lized in 2-D histogram, but more computation time is consumed.

Therefore, in the followed experiments, w = 3 is selected in 2-D

HS to achieve a well-balanced tradeoff between the utilization of

contextual information and computation complexity. 

3. Experimental results and analysis 

In this section, five experiments are designed to test the per-

formance of our proposed algorithms. Experiment in Section 3.1 is

designed to test the brightness controllability in both 1-D and 2-

D HS by varying parameter k 1 . Experiment in Section 3.2 is pro-

vided to test the contrast controllability in 1-D and 2-D HS by

varying parameter k 2 . Experiment in Section 3.3 tests both the

brightness and contrast controllability by varying k 1 and k 2 simul-

taneously. In order to show the superiority and applicability of

the proposed algorithm, a comparison with some state of art his-

togram based image enhancement methods is given in Section 3.4 .

Section 3.5 provides the discussion on parameters selection of the

proposed algorithm. To evaluate the enhanced results, some objec-

tive image quality assessments (IQAs) which overcome the short-
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
oming of artificial factors and take advantage of image statistics

roperties to establish a steady standard of performance evalua-

ion are used. In this paper, four widely used no-reference IQAs,

.e., Spatial-frequency (SF, in [34] ), Average-gradient (AG, in [35] ),

dge-intensity (EI, in [36] ) and Measurement of enhancement by

ntropy (EME, in [37] ) are employed to measure the quality of en-

anced images. 

.1. Brightness enhancement 

As we discussed above, the proposed algorithms can tune the

rightness and contrast of enhanced image by adjusting parame-

ers k 1 and k 2 in both 1-D HS and 2-D HS. In this experiment, the

esting on brightness controllability of proposed 1-D HS and 2-D

S is provided. The classic and widely used “Pollen” image is se-

ected as input image. The enhanced images using 1-D HS and 2-D

S under different k 1 are listed in Fig. 2 . Table 1 shows the bright-

ess, contrast and IQAs of these enhanced images. Form Fig. 2 and

able 1 , we can find that, for each method, the brightness of en-

anced image is about k 1 times larger than the input image, while

he contrast, SF, AG and EI stay almost the same. Therefore, we

an draw a conclusion that, changing k 1 in 1-D HS and 2-D HS can

roportional tunes the brightness of enhanced image, and makes

he contrast of enhanced image basically unchanged. Moreover,

ompared with 1-D HS, 2-D HS performs better in restraining the

rightness and enhancing the contrast due to the contextual in-

ormation is utilized. This makes the images enhanced by 2-D HS

ave better perceptual quality than 1-D HS. 

.2. Contrast enhancement 

In this experiment, testing on contrast controllability of pro-

osed 1-D HS and 2-D HS is provided. We still take the “Pollen”

mage as input image, the enhanced images using 1-D HS and 2-

 HS under different k 2 are shown in Fig. 3 . Table 2 presents the

orresponding brightness, contrast and IQAs. It can be seen from

ig. 3 that, images in Fig. 3 (b)–(d) and (e)–(g) shows significant

ontrast enhancement visually. The corresponding histograms in

ig. 3 also have larger gray-level range than original histogram.

oreover, form the input to output gray-level mapping functions

hown in Fig. 3 (h) and the IQAs in Table 2 , we can find that, chang-

ng k 2 in both 1-D HS and 2-D HS can proportional increases the

ontrast of enhanced image. The larger value of k 2 is, the higher

ontrast in enhanced image can be achieved. In addition, 2-D HS

btains larger contrast than 1-D HS under the same value of k 2 .

his means that 2-D HS generates higher perceptual quality than

-D HS since the contextual information around each pixel is used

n the processing of 2-D HS. 

.3. Both brightness and contrast enhancement enhancement 

Usually, in some image enhancement applications, particularly

n consumer electronics, the users prefer to tune both brightness

nd contrast simultaneously. In this experiment, we provide the

esting on both brightness and contrast controllability of the pro-

osed 1-D HS and 2-D HS. Fig. 4 shows the enhanced images by 1-

 HS and 2-D HS under different value of k 1 and k 2 . Table 3 shows

he corresponding IQAs, brightness and contrast of enhanced im-

ges. Form Fig. 4 and Table 3 , we can find that, the brightness and

ontrast of enhanced images increase proportionally with k 1 and

 2 increased. This means that both brightness and contrast con-

rollability can be achieved in the proposed 1-D HS and 2-D HS.

imilar with the above experimental results, 2-D HS obtains bet-

er performance in both perceptual quality and IQAs than 1-D HS

nder the same value of k and k . This can explained that 2-D
1 2 

trollable image enhancement based on histogram specification, 
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a b c d

e f g h

Fig. 2. Brightness enhancement for image “Pollen”. (a) the input image and its histogram; (b–d) brightness enhanced images and the corresponding 1-D histogram by using 

1-D HS with k 1 = 2 , 3 and 5 ; (e–g) brightness enhanced images and the corresponding 2-D histogram by using 2-D HS with k 1 = 2 , 3 and 5 ; (h) input to output gray-level 

mapping functions. 

Table 1 

IQAS in brightness enhancement. 

Input image 1-D HS 2-D HS 

k 1 = 2 k 1 = 3 k 1 = 5 k 1 = 2 k 1 = 3 k 1 = 5 

SF 5.15 5.24 5.26 5.22 6.18 6.19 6.10 

AG 2.19 2.15 2.16 2.16 2.59 2.60 2.59 

EI 22.39 21.70 21.86 21.78 26.34 26.31 26.24 

Brightness 38.75 78.25 117.00 194.55 71.70 111.51 190.88 

Contrast 91.79 80.64 82.09 82.39 122.35 121.75 122.48 

EME 8.97 4.21 2.86 1.68 5.63 3.62 2.12 

H  

o

3

3

 

H  

o  

W  

w  

2  

f  

[  

m  

h  
S utilizes contextual information around each pixel while 1-D HS

nly use the gray value of each pixel itself. 

.4. Compared with some existing methods 

.4.1. Gray level image enhancement 

In this experiment, the comparative analysis of proposed 1-D

S and 2-D HS on gray-level image enhancement with some state
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
f art histogram based image enhancement methods are provided.

e compare the enhancement results of our proposed methods

ith classical histogram equalization method (1-D HE, in [14] ),

-D histogram equalization method (2-D HE, in [24] ) well per-

ormed power-constrained contrast enhancement method (PCCE, in

43] ), recent proposed spatial entropy-based contrast enhancement

ethod (SECEDCT, in [38] ) and fuzzy-contextual based contrast en-

ancement method (FCCE, in [39] . The parameters k 1 and k 2 in 1-
trollable image enhancement based on histogram specification, 
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a b c d

e f g h

Fig. 3. Contrast enhancement for image “Pollen”. (a) the input image and its histogram; (b–d) contrast enhanced images and the corresponding 1-D histogram by using 

1-D HS with k 2 = 1 . 5 , 3 and 7 ; (e–g) contrast enhanced image and the corresponding 2-D histogram by using 2-D HS with k 2 = 1 . 5 , 3 and 7 ; (h) input to output gray-level 

mapping functions. 

Table 2 

IQAS in contrast enhancement. 

Input image 1-D HS 2-D HS 

k 2 = 2 k 2 = 3 k 2 = 5 k 2 = 2 k 2 = 3 k 2 = 5 

SF 5.15 7.41 13.26 20.97 8.43 14.82 23.88 

AG 2.19 3.01 5.31 8.71 3.44 5.81 9.55 

EI 22.39 30.45 53.74 88.72 34.93 58.97 97.38 

Brightness 38.75 43.32 60.44 102.98 34.03 46.85 79.12 

Contrast 91.79 153.19 462.99 1286.51 203.17 555.19 1512.68 

EME 8.97 11.03 14.14 14.52 18.96 24.14 24.04 

 

 

 

 

 

f  

b  

p  

t  

e  
D HS and 2-D HS are set as [ k 1 = 2 , k 2 = 3] and [ k 1 = 3 , k 2 = 9] .

Moreover, for space saving, in the following tables, “B” represent

for brightness and “C” for contrast are used, and only one digit

after the decimal point of all IQAs is retained. Tables 4 and 5

show the enhanced results and the corresponding IQAs by dif-
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
erent methods for “Pollen” and “Elaine” images. From those ta-

les we can find that, 1) the IQAs of enhanced image by our pro-

osed methods can be absolutely controlled. This property offers

he users to tune the enhanced result according to their preference,

nvironment brightness and so on; 2) the proposed 1-D HS and
trollable image enhancement based on histogram specification, 
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a b c d

e f g h

Fig. 4. Effects of both brightness and contrast enhancement. (a) the input image; (b) enhanced image and its 1-D histogram using 1-D HS with k 1 = 2 , k 2 = 1 . 5 ; (c) using 1-D 

HS with k 1 = k 2 = 3 ; (d) using 1-D HS with k 1 = 5 , k 2 = 7 ; (e) enhanced image and its 2-D histogram using 2-D HS with k 1 = 2 , k 2 = 1 . 5 ; (f) using 2-D HS with k 1 = k 2 = 3 ; 

(g) using 2-D HS with k 1 = 5 , k 2 = 7 ; (h) input to output gray-level mapping functions. 

Table 3 

IQAS in both brightness and contrast enhancement. 

Input image 1-D HS 2-D HS 

k 1 = 2 k 1 = 3 k 1 = 5 k 1 = 2 k 1 = 3 k 1 = 5 

k 2 = 1 . 5 k 2 = 3 k 2 = 5 k 2 = 1 . 5 k 2 = 3 k 2 = 7 

SF 5.15 7.86 14.65 18.58 9.23 17.26 23.05 

AG 2.19 3.24 6.17 7.69 3.89 7.34 9.54 

EI 22.39 32.73 62.52 78.27 39.45 73.66 97.62 

Brightness 38.75 78.86 120.06 152.56 68.57 100.41 122.29 

Contrast 91.79 183.34 666.30 1195.84 270.58 961.58 1776.27 

EME 8.97 6.23 8.02 8.95 9.18 12.73 16.00 

2  

c  

v  

i  

b  

i

3

 

c  

m  

I  

L  
-D HS have better performance in brightness restraining while

ontrast enhancement. This means that the proposed methods pro-

ide high image contrast and good perceptual quality while reduc-

ng power consumption; 3) 2-D HS still has better performance in

oth IQAs and perceptual quality than 1-D HS since the contextual

nformation around each pixel is used in 2-D HS. 
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
.4.2. Color image enhancement 

The proposed algorithms can be straightforwardly extended to

olor image enhancement by applying the algorithms to the lu-

inance component and maintain the chrominance component.

n this experiment, the input color image is transformed into CIE

ab color space and only “L” component is taken for enhance-
trollable image enhancement based on histogram specification, 
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Table 4 

Comparative analysis on image enhancement by different methods for gray-level “Pollen” image. 

Table 5 

Comparative analysis on image enhancement by different methods for gray-level “Elaine” image. 

 

 

 

 

 

 

H  

s  

i  

h  

t  

2  
ment. After that, inverse transform is employed to get the en-

hanced color image. A public color image database, which avail-

able on [41] are used for testing. The color images in this database

are widely employed in image enhancement applications [24,40] .

Table 6 lists the enhanced results by different methods for the

“House” image. From this table, we can find that, 1-D HS and 2-D
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
S with [ k 1 = 2 , k 2 = 5] and [ k 1 = 3 , k 2 = 9] , the enhanced image

how more details than 1-D HE, PCCE, 2-D HE, SECEDCT and FCCE,

.e., the texture of the “wall” and the “small tree” in the front of

ouse. Moreover, it is undeniable that the users can proportionally

une the brightness and contrast of enhanced image in 1-D HS and

-D HS according to their visual preference. Table 7 lists various
trollable image enhancement based on histogram specification, 
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Table 6 

Comparative analysis on image enhancement by different methods for gray-level “House” image. 
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t  

p  

i  
nhanced results on the Flower” image by 1-D HS, 2-D HS with dif-

erent value of k 1 and k 2 . It can be seen that, with the increments

f k 1 and k 2 , the brightness and contrast of output image are en-

anced. If the users want to find more information in the whole

mage, they can increase the two parameters simultaneously and

ice versa. For example, when [ k 1 = 2 , k 2 = 3] or [ k 1 = 3 , k 2 = 3]

re selected, the “flower” and the background are highlighted in

he enhanced image. On the contrary, if the users hold the parame-

er k 1 and only increase parameter k 2 , the texture on the surface of

flower” is enhanced (such as [ k 1 = 1 , k 2 = 9] or [ k 1 = 2 , k 2 = 9] ). 

.4.3. Average performance of the proposed algorithm 

In order to verify the average performance of the proposed

ethods, a public database includes 27 images and provided by

ASA [42] (illustrated in Table. 8 ) are used for testing. The pa-

ameters k 1 and k 2 in both 1-D HS and 2-D HS are also shown in

able 8 . Table 9 lists the average performance of six IQAs on NASA

atabase. It can be seen that, the proposed 2-D HS and 1-D HS

erform better than other methods with respect to six IQAs. 2-D

S still has better performance than 1-D HS since 2-D HS intro-

uces the contextual information around each pixel in the process

f enhancement. 

.5. Parameter selection 

The parameter w in 2-D HS has been discussed in Section 2 ,

here have two parameters k 1 and k 2 in 1-D and 2-D HS. Although

hese two parameters exactly offer users a way to freely tune the

rightness and contrast of enhanced image. Without loss of gen-

rality, in this section, we provide the discussions on optimize and

utomatic estimation of these two parameters in some non-manual

ntervention applications. 

Although in contrast enhancement technique, the enhanced im-

ge is supposed to has better contrast than input image, in our

xperiments, the largest contrast value not always reflects the

est visual pleasing results (e.g., as shown in Figs. 2 –4). There-

ore, we consider that utilize the EME value, which reflects the de-

ree of enhancement, to assessment enhanced results. As shown

n Table 1 , for the “Pollen” image, with the increment of k values,
1 

Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
he EME values decreased. And the enhanced image with largest

ME value has the most acceptable result. We can also find the

ame results from Tables 2 to 3 , the enhanced image with largest

ME value has the most visual pleasing. Thus, in parameters se-

ection, we suggest to select k 1 and k 2 that correspond to high-

st EME value, e.g., [ k 1 = 5 , k 2 = 7] as the optimize parameters for

he “Pollen” image. Furthermore, as we have discussed above, the

arameter k 1 tunes the brightness of enhanced image. The higher

alue k 1 is, the brighter output image is achieved. Usually, we can

djust the parameter k 1 to make the brightness of enhanced image

lose to an accepted perceptual quality value or the median bright-

ess. For example, in the application of gray-level image enhance-

ent, k 2 ≈ 2 can be chosen if the brightness of the input image is

4. Moreover, in some real world applications such as surveillance,

V, mobile phone and other consumer electronics, the optimal se-

ection of k 1 can be determined by the environment brightness

hich can be obtained by brightness sensor or camera in those

quipment. We can turn down k 1 to make the enhanced image

ark if the consumer electronics are under a bright environment

nd vice versa. Parameter k 2 tunes the contrast of enhanced im-

ge. The larger value of k 2 is, the higher contrast in output image

an be achieved. Ideally, for a gray image, when a suitable k 1 is

hosen to make the brightness of enhanced image close to 128,

nd the parameter k 2 tends to infinity, the corresponding Gaus-

ian distribution will becomes a uniform distribution. This means

hat, under the above situation, the proposed 1-D HS and 2-D HS

re equal to 2-D HE and 2-D HE respectively. Its worth to note

hat, the highest contrast or highest brightness of enhanced im-

ge is not the acceptable perceptual quality for users. However, in

ur proposed methods, users can own the chance to have prefer-

nce brightness and contrast of enhance image only by adjusting

he two parameters k 1 and k 2 . 

. Conclusion 

In this paper, two brightness and contrast controllable his-

ogram specification algorithms for image enhancement are pro-

osed. The main contribution of this paper relies on the follow-

ng aspects: (1) the proposed algorithms can tune the brightness
trollable image enhancement based on histogram specification, 
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Table 7 

Comparative analysis on image enhancement by different methods for gray-level “Flower” image. 
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and contrast of enhanced image by using two parameters. This en-

able the users obtaining their preferable brightness and contrast in

real-world applications. (2) It is easy to restrain brightness while

enhance contrast for power saving by using the proposed method.

(3) To the best of our knowledge, the proposed methods are the

first attempt to tune the brightness and contrast of enhanced im-

age using histogram based technologies. (4) The proposed 2-D HS

holds more detail information in the process of enhancement than

1-D histogram based methods since the contextual information is

utilized in 2-D histogram. 
Please cite this article as: B. Xiao et al., Brightness and contrast con

Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017.11.057 
Experimental results show that, when the suitable parameters

re selected, the proposed methods have better performance than

ome state of art histogram based image enhancement methods in

oth perceptual quality and image quality assessments. Although

e proposed a principle on parameters selection to obtain the

ost visual pleasing enhanced image, the selections are based on

ontrast and EME measure of enhanced image, which is a time-

onsuming process. In our future work, how to select the suitable

arameters, and how to select parameters automatically and effi-

iently are the topics we mainly focused on. 
trollable image enhancement based on histogram specification, 
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Table 8 

NASA image database for enhancement 

Table 9 

Average of six IQAs by different methods on NASA database. 

2-D HS 1-D HS 1-D HE 2-D HE PCCE SECEDCT FCCE 

SF 15.46 16.20 13.51 11.62 6.29 7.31 10.22 

AG 5.17 4.63 4.16 3.63 1.81 2.21 4.03 

EI 53.49 45.91 40.30 35.59 18.65 36.22 38.13 

Brightness 114.38 136.46 122.50 95.48 54.54 100.21 106.13 

Contrast 1787.33 1375.83 1569.70 1407.20 595.45 1102.12 1434.11 

EME 12.98 10.68 6.42 7.84 5.72 6.13 9.14 
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