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In image fusion literature, multi-scale transform (MST) and sparse representation (SR) are two most
widely used signal/image representation theories. This paper presents a general image fusion framework
by combining MST and SR to simultaneously overcome the inherent defects of both the MST- and SR-
based fusion methods. In our fusion framework, the MST is firstly performed on each of the pre-registered
source images to obtain their low-pass and high-pass coefficients. Then, the low-pass bands are merged
with a SR-based fusion approach while the high-pass bands are fused using the absolute values of coef-
ficients as activity level measurement. The fused image is finally obtained by performing the inverse MST
on the merged coefficients. The advantages of the proposed fusion framework over individual MST- or
SR-based method are first exhibited in detail from a theoretical point of view, and then experimentally
verified with multi-focus, visible-infrared and medical image fusion. In particular, six popular multi-scale
transforms, which are Laplacian pyramid (LP), ratio of low-pass pyramid (RP), discrete wavelet transform
(DWT), dual-tree complex wavelet transform (DTCWT), curvelet transform (CVT) and nonsubsampled
contourlet transform (NSCT), with different decomposition levels ranging from one to four are tested
in our experiments. By comparing the fused results subjectively and objectively, we give the best-
performed fusion method under the proposed framework for each category of image fusion. The effect
of the sliding window’s step length is also investigated. Furthermore, experimental results demonstrate
that the proposed fusion framework can obtain state-of-the-art performance, especially for the fusion of
multimodal images.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, image fusion has become an important issue in
image processing community. The target of image fusion is to gen-
erate a composite image by integrating the complementary infor-
mation from multiple source images of the same scene [1]. For
an image fusion system, the input source images can be acquired
from either different types of imaging sensors or a sensor whose
optical parameters can be changed, and the output called fused
image will be more suitable for human or machine perception than
any individual source image. Image fusion technique has been
widely employed in many applications such as computer vision,
surveillance, medical imaging, and remote sensing.
Multi-scale transform (MST) theories are the most popular tools
used in various image fusion scenarios such as multi-focus image
fusion, visible-infrared image fusion, and multimodal medical
image fusion. Classical MST-based fusion methods include pyra-
mid-based ones like Laplacian pyramid (LP) [2], ratio of low-pass
pyramid (RP) [3] and gradient pyramid (GP) [4], wavelet-based
ones like discrete wavelet transform (DWT) [5], stationary wavelet
transform (SWT) [6] and dual-tree complex wavelet transform
(DTCWT) [7], and multi-scale geometric analysis (MGA)-based
ones like curvelet transform (CVT) [8] and nonsubsampled con-
tourlet transform (NSCT) [9]. In general, the MST-based fusion
methods consist of the following three steps [10]. First, decompose
the source images into a multi-scale transform domain. Then,
merge the transformed coefficients with a given fusion rule.
Finally, reconstruct the fused image by performing the correspond-
ing inverse transform over the merged coefficients. These methods
assume that the underlying salient information of the source
images can be extracted from the decomposed coefficients.
Obviously, the selection of transform domain plays a crucial role
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in these methods. A comparative study of different MST-based
methods is reported in [11], where Li et al. found that the NSCT-
based method can generally achieve the best results. In addition
to the selection of transform domain, the fusion rule in either
high-pass or low-pass band also has a great impact on the fused
results. Conventionally, the absolute value of high-pass coefficient
is used as the activity level measurement for high-pass fusion. The
simplest rule is selecting the coefficient with largest absolute value
at each pixel position (the ‘‘max-absolute’’ rule). Many improved
high-pass fusion rules which make use of the neighbor coefficients’
information have also been developed. However, compared with
the great concentration on developing effective rules for high-pass
fusion, less attention has been paid to the fusion of low-pass bands.
In most MST-based fusion methods, the low-pass bands are just
simply merged by averaging all the source inputs (the ‘‘averaging’’
rule).

Sparse representation addresses the signals’ natural sparsity,
which is in accord with the physiological characteristics of human
visual system [12]. The basic assumption behind SR is that a signal
x 2 Rn can be approximately represented by a linear combination of
a ‘‘few’’ atoms from an overcomplete dictionary D 2 Rn�mðn < mÞ,
where n is the signal dimension and m is the dictionary size. That
is, the signal x can be expressed as x � Da, where a 2 Rm is the
unknown sparse coefficient vector. As the dictionary is overcom-
plete, there are numerous feasible solutions for this underdeter-
mined system. The target of SR is to calculate the sparsest a
which contains the fewest nonzero entries among all feasible solu-
tions (known as sparse coding). In SR-based image processing
methods, the sparse coding technique is often performed on local
image patches for the sake of algorithm stability and efficiency
[13]. Yang and Li [14] first introduced SR into image fusion. The slid-
ing window technique (patches are overlapped) is adopted in their
method to make the fusion process more robust to noise and mis-
registration. In [14], the sparse coefficient vector is used as the
activity level measurement. Particularly, among all the source
sparse vectors, the one owning the maximal l1 � norm is selected
as the fused sparse vector (the ‘‘max-L1’’ rule). The fused image is
finally reconstructed with all the fused sparse vectors. Their exper-
imental results show that the SR-based fusion method owns clear
advantages over traditional MST-based methods for multi-focus
image fusion, and can lead to state-of-the-art results. In the past
few years, the SR-based fusion has emerged as a new active branch
in image fusion research with many improved approaches being
proposed [15–18].

Although both the MST- and SR-based methods have achieved
great success in image fusion, it is worthwhile to notice that both
of them have some defects, which will be further discussed in this
paper. Moreover, to overcome the related disadvantages, we
present a general image fusion framework by taking the comple-
mentary advantages of MST and SR. Specifically, the low-pass
MST bands are merged with a SR-based fusion approach while
the high-pass MST bands are fused using the conventional ‘‘max-
absolute’’ rule with a local window based consistency verification
scheme [5]. To verify the effectiveness of the proposed framework,
six popular multi-scale transforms (MSTs), which are LP, RP, DWT,
DTCWT, CVT and NSCT, with different decomposition levels rang-
ing from one to four are tested in our experiments. By comparing
the fused results subjectively and objectively, we give the best-per-
formed methods under the proposed framework for the fusion of
multi-focus, visible-infrared and medical images, respectively.
The effect of the sliding window’s step length is also investigated.
Experimental results demonstrate that the combined methods
can clearly outperform both the MST- and SR-based methods.
Furthermore, the proposed fusion methods can obtain state-
of-the-art fused results, especially for the fusion of medical images
as well as visible-infrared images.
The rest of this paper is organized as follows. We first present
the detailed fusion framework in Section 2. In Section 3, the disad-
vantages of MST- and SR-based methods and why the proposed
framework can overcome them are discussed from a theoretical
perspective. The experimental results are given in Section 4.
Section 5 summarizes some main conclusions of this paper.
2. Proposed fusion framework

To better exhibit the advantages of the proposed framework
over MST- and SR-based methods, we first present the details of
our framework in this section.
2.1. Dictionary learning

The overcomplete dictionary determines the signal represen-
tation ability of sparse coding. Generally, there are two main cat-
egories of offline approaches to obtain a dictionary. The first one
is directly using the analytical models such as discrete cosine
transform (DCT) and CVT. However, this category of dictionary
is restricted to signals of a certain type and cannot be used for
an arbitrary family of signals. The second category is applying
the machine learning technique to obtain the dictionary from a
large number of training image patches. Suppose that M training
patches of size

ffiffiffi
n
p
�

ffiffiffi
n
p

are rearranged to column vectors in the

Rn space, thereby the training database fyig
M
i¼1 is constructed

with each yi 2 Rn. The dictionary learning model can be pre-
sented as

min
D;faigM

i¼1

XM

i¼1

aik k0 s:t: yi � Daik k2 < e; i 2 f1; . . . ;Mg; ð1Þ

where e > 0 is an error tolerance, faigM
i¼1 is the unknown sparse vec-

tors corresponding to fyig
M
i¼1 and D 2 Rn�m is the unknown dictio-

nary to be learned. Some effective methods such as MOD [19] and
K-SVD [20] have been proposed to solve this problem. The learned
dictionaries usually have better representation ability than the pre-
constructed ones, so we adopt the learning-based approach in this
paper.

In this work, the sparse coding technique is employed for the
fusion of MST low-pass bands. One possible way to get the train-
ing patches is sampling from the corresponding MST low-pass
bands which are obtained from some training images under
the same decomposition condition. However, in this case, the
dictionary learning process should be repeated once either the
selected transform domain or even one specific parameter (such
as the decomposition level or selected image filter) is changed.
Obviously, this will decrease the flexibility and practicality of
the fusion method to a large extent. In this paper, we aim to
learn a universal dictionary which can be used in any specific
transform domain and parameter settings. As is well known,
the MST low-pass band obtained by image filtering can be
viewed as a smooth version of the original image. Since the
numerous ‘‘flat’’ patches contained in a natural image can be
well sparsely represented by a dictionary learned from natural
image patches, it is theoretically feasible to use the same dictio-
nary to represent the patches in the low-pass bands so long as
the mean value of each sampled patch is subtracted to zero
before training. In this situation, the mean value of each atom
in the obtained dictionary is also zero, so the atoms only contain
structural information. For an input patch to be represented, its
mean value should also be subtracted to zero before sparse
coding. Thus, we can directly use natural image patches to learn
a universal dictionary.



Y. Liu et al. / Information Fusion 24 (2015) 147–164 149
2.2. Detailed fusion scheme

The schematic diagram of the proposed fusion framework is
shown in Fig. 1. For simplicity, only the fusion of two source
images is considered while the proposed framework can be
straightforwardly extended to fuse more than two images. The
detailed fusion scheme contains the following four steps.

Step 1: MST decomposition.
Perform a specific MST on the two source images fIA; IBg to
obtain their low-pass bands fLA; LBg and high-pass bands which
are uniformly denoted as fHA;HBg.

Step 2: Low-pass fusion.
(i) Apply the sliding window technique to divide LA and LB into

image patches of size
ffiffiffi
n
p
�

ffiffiffi
n
p

from upper left to lower
right with a step length of s pixels. Suppose that there are

T patches denoted as fpi
Ag

T
i¼1 and fpi

Bg
T
i¼1 in LA and LB,

respectively.
(ii) For each position i, rearrange fpi

A; p
i
Bg into column vectors

fvi
A;vi

Bg and then normalize each vector’s mean value to
zero to obtain fv̂i

A; v̂
i
Bg by
v̂i
A ¼ vi

A � �v i
A � 1; ð2Þ

v̂i
B ¼ vi

B � �v i
B � 1; ð3Þ

where 1 denotes an all-one valued n� 1 vector, �v i
A and �v i

B

are the mean values of all the elements in vi
A and vi

B,
respectively.
(iii) Calculate the sparse coefficient vectors fai
A;ai

Bg of fv̂i
A; v̂

i
Bg

using the orthogonal matching pursuit (OMP) algorithm
[21] by
ai
A ¼ arg min

a
jjajj0 s:t: jjv̂i

A � Dajj2 < e; ð4Þ

ai
B ¼ arg min

a
jjajj0 s:t: jjv̂i

B � Dajj2 < e; ð5Þ

where D is the learned dictionary.
Fig. 1. The schematic diagram of th
(iv) Merge ai
A and ai

B with the ‘‘max-L1’’ rule to obtain the fused
sparse vector
ai
F ¼

ai
A if ai

A

�� ��
1 > ai

B

�� ��
1

ai
B otherwise

(
: ð6Þ

The fused result of vi
A and vi

B is calculated by

vi
F ¼ Dai

F þ �v i
F � 1; ð7Þ

where the merged mean value �v i
F is obtained by

�v i
F ¼

�v i
A if ai

F ¼ ai
A

�v i
B otherwise

(
: ð8Þ

(v) Iterate the above process for all the source image patches in

fpi
Ag

T
i¼1 and fpi

Bg
T
i¼1 to obtain all the fused vectors fvi

Fg
T
i¼1. Let

LF denotes the low-pass fused result. For each vi
F , reshape it

into a patch pi
F and then plug pi

F into its original position in LF .
As patches are overlapped, each pixel’s value in LF is averaged
over its accumulation times.

Step 3: High-pass fusion.
Merge HA and HB to obtain HF with the popular ‘‘max-absolute’’
rule using the absolute value of each coefficient as the activity
level measurement. Then, apply the consistency verification
scheme (see in [5]) to ensure that a fused coefficient does not
originate from a different source image from most of its
neighbors. This can be implemented via a small majority filter.

Step 4: MST reconstruction.
Perform the corresponding inverse MST over LF and HF to recon-
struct the final fused image IF .

3. Why the proposed framework works

In this section, for each of the MST- and SR-based fusion
methods, we first itemize its main defects and then show why
e proposed fusion framework.
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the proposed framework can overcome them. All the points given
here will be further experimentally verified in Section 4.
3.1. Advantages over the MST-based methods

For the conventional MST-based image fusion methods (the
high-pass bands are merged with the ‘‘max-absolute’’ rule while
the low-pass bands are fused using the ‘‘averaging’’ rule), there
are two main drawbacks as follows.

The first one is the loss of contrast. Since most energy of an
image is contained in the low-pass band (even though the decom-
position level is set to 4 according to the analysis in [11]), the
‘‘averaging’’ fusion rule tends to lose some energy in the source
images. For multi-focus image fusion, this phenomenon is not
obvious because the source images are captured from the same
type of sensors. However, for the fusion of multimodal images such
as visible-infrared and medical images, the fused results of the
MST-based methods are often in low contrast. This is mainly
because different imaging modalities reflect different physical
attributes, so a same region in different source images may have
different brightness. For example, Fig. 2(a) shows a pair of com-
puted tomography (CT) and magnetic resonance (MR) images. It
can be seen that the CT image mainly focuses on dense structures
like bones, while the MR image provides excellent soft-tissue
details. When the ‘‘averaging’’ rule is used for low-pass fusion,
the energy contained in those regions will be lost to a large extent.
As a result, the contrast of those regions in the fused image will
decrease a lot after MST reconstruction.

The second one is the difficulty in selecting the MST decomposi-
tion level. On one hand, to ensure enough spatial details can be
extracted from the source images, the decomposition level cannot
be too small such as 1 or 2. On the other hand, Li et al. [11] exper-
imentally verified that when the decomposition level is too large,
one coefficient in the low-pass band have an impact on a large set
of pixels in the fused image, so an error in the low-pass band
(mainly caused by noise or mis-registration between the source
images) will lead to serious artificial effects. Moreover, when the
decomposition level becomes larger, the quality of high-pass fusion
is also more sensitive to noise and mis-registration. Therefore,
when the source images are not precisely registered, the decompo-
sition level cannot be too large. Particularly, for multi-focus image
fusion, due to the different imaging parameters (e.g. focal length)
for multiple source images, the locations of object edges in different
source images are often not exactly the same for their different
sharpness. A typical example is shown in Fig. 2(b). Between the
two source images, both the borders and numbers of the two clocks
in the scene have different sharpness, so it is practically impossible
to make an accurate registration. Thus, a compromise on decompo-
sition level should be made for the consideration of extracting
enough spatial details and being robust to mis-registration.
Although a recommended value of 4 is given in [11], we
(a)

Fig. 2. Two pairs of source images. (a) Medi
experimentally find that the MST-based methods are still sensitive
to mis-registration (results are shown in Section 4).

As a smart blending approach, the SR-based image fusion
scheme is combined into the MST-based fusion methods to
overcome the above two defects. In the proposed framework, the
SR-based scheme is employed to fuse the MST low-pass bands. In
Section 2, after applying the ‘‘max-L1’’ rule in Eq. (6), we transfer
the energy in source images to the fused image by Eq. (8).
Therefore, the contrast in the fused image is improved. For the
second defect, by extracting spatial details in low-pass band with
the SR-based fusion scheme, the decomposition level can be set
less than 4 for multi-focus image fusion to make the method more
robust to mis-registration. Thus, the difficulty in determining
decomposition level can be well solved.
3.2. Advantages over the SR-based method

The conventional SR-based image fusion method [14] mainly
has the following three defects.

The first one is the fine details in source images like textures
and edges tend to be smoothed for the following two reasons. First,
the signal representation ability of the dictionary may be not suf-
ficient for fine details, which means that the reconstruction result
is not approximate to the input signal. As we know, the represen-
tation ability of the over-completed dictionary relies much on the
number of atoms in it, but a dictionary with a large size will
directly increase the computational cost. More importantly, the
study in [22] shows that a highly redundant dictionary may lead
to potential visual artifacts in the reconstruction result, especially
when the input signal is corrupted by noise. Thus, a compromise
on dictionary size is usually required. A typical example is that
the dictionary size is 256 when the input signal is 64 dimensional
(8� 8 image patch) [15]. Second, the usage of sliding window tech-
nique may also cause smoothness. The step length of the sliding
window is usually set to 1 when fusing images directly in spatial
domain to avoid blocking effects [14]. However, when the adjacent
patches are greatly overlapped, some details in the fused image
will be smoothed.

The second one is the ‘‘max-L1’’ rule may cause spatial inconsis-
tency in the fused image when the source images are captured by
different imaging modalities. As mentioned before, for multimodal
image fusion, a region may be very bright in one source image
while very dark in another, but the region in both of them may
be very ‘‘flat’’ with few fine details. Note that although a region
in each of two source images is visually ‘‘flat’’, there still exists little
difference between the two source images in terms of variance,
and the difference is usually consistent over all the patches in that
region. That is to say, if one patch in the region of source image A
has a larger variance than the corresponding patch in source image
B, then most of the other patches in that region of source image A
also tend to have larger variances than the corresponding patches
(b)

cal images, and (b) multi-focus images.
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in source image B. However, since the difference is very tiny, the
‘‘max-L1’’ fusion rule will become very sensitive to the random
noise in spatial domain because a small change of value at a pixel
may influence the fusion result of several patches. As a result, the
fused patches in that region may originate from different source
images, which will lead to spatial inconsistency in the fused image.
Since the SR-based method handles patches in spatial domain, the
impact of high-frequency noise is considerable.

The third one is the low computational efficiency. Since the slid-
ing window’s step length should be small enough, the sparse cod-
ing technique is performed on a large number of image patches.
For instance, when the patch size is 8� 8 and the step length is
set to 1, there are 62001 patches to be processed for a source image
of size 256� 256. In this case, it usually takes several minutes to
fuse two source images with the SR-based method.

The proposed fusion framework can effectively overcome the
above three defects of the SR-based method. In our fusion frame-
work, the high-frequency spatial information is separated by per-
forming MST and extracted by the ‘‘max-absolute’’ rule.
Meanwhile, the representation ability of the dictionary is enough
to satisfy the reconstruction accuracy for low-frequency compo-
nents. Furthermore, we will show in the next section that the slid-
ing window’s step length in low-pass bands can be set larger than
that in spatial domain. Therefore, the inclination of SR-based
method to smooth fine details can be prevented. For the second
defect, without high-frequency details, the random noise can be
effectively eliminated, so the probability that the patches in a ‘‘flat’’
region originate from different source images will decrease to a
large extent, leading to better spatial consistency. Finally, the com-
putational efficiency can also be improved by the proposed frame-
work because the number of patches required to be processed with
the sparse coding technique is greatly reduced. For one thing, the
step length can be set larger. For another, the low-pass bands of
many MSTs such as LP and DWT have smaller size relative to the
original image.
4. Experiments

4.1. Experimental setups

4.1.1. Source images
As shown in Fig. 3, 26 pairs of source images grouped into three

categories are employed to verify the effectiveness of the proposed
fusion framework. Among them, there are 10 pairs of multi-focus
images (Figs. 3(a)), 8 pairs of visible-infrared images (Fig. 3(b))
and 8 pairs of medical images (Fig. 3(c)). For each pair, the two
source images are assumed to be pre-registered in our study.

4.1.2. Objective evaluation metrics
It is not an easy task to quantitatively evaluate the quality of a

fused image since the reference image (ground truth) does not
exist in practice. In recent years, many fusion metrics have been
proposed, but none of them is universally believed to be always
more reasonable than others for various fusion scenarios. Thus, it
is usually necessary to apply several metrics to make a comprehen-
sive evaluation. In this work, five popular metrics, which are briefly
introduced as follows, are employed to quantitatively evaluate the
performances of different fusion methods. Uniformly, let A and B
denote two source images of size H �W while F represents the
fused image.

1. Standard deviation (SD). The SD of the fused image is defined as
SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H �W

XH

x¼1

XW

y¼1
ðFðx; yÞ � lÞ2

r
; ð9Þ
where l is the mean value of the fused image. SD is mainly used
to measure the overall contrast of the fused image.

2. Entropy (EN). The EN of the fused image is defined as
EN ¼ �
XL�1

l¼0

pFðlÞlog2pFðlÞ; ð10Þ

where L is the number of gray level and pFðlÞ is the normalized
histogram of the fused image. In our experiments, L is set to
256. EN is used to measure the amount of information in the
fused image.

3. The gradient based fusion metric Q G proposed by Xydeas and
Petrovic [23]. It is calculated by
Q G ¼
PH

x¼1

PW
y¼1ðQ

AFðx; yÞwAðx; yÞ þ QBFðx; yÞwBðx; yÞÞPH
x¼1

PW
y¼1ðwAðx; yÞ þwBðx; yÞÞ

; ð11Þ

where QAFðx; yÞ ¼ QAF
g ðx; yÞQ

AF
a ðx; yÞ;Q

AF
g ðx; yÞ and QAF

a ðx; yÞ denote
the edge strength and orientation preservation values at pixel
ðx; yÞ. The definition of QBFðx; yÞ is the same as that of QAFðx; yÞ.
The weighting factors wAðx; yÞ and wBðx; yÞ indicate the signifi-
cance of QAFðx; yÞ and QBFðx; yÞ, respectively. The QG is a popular
fusion metric which computes the amount of gradient informa-
tion injected into the fused image from the source images.

4. The phase congruency based fusion metric QP proposed by Zhao
et al. [24]. It is based on the principal moments of the image
phase congruency, which reflect the information of image sali-
ent features such as edges and corners. The definition of QP is
Q P ¼ ðPpÞaðPMÞbðPmÞc; ð12Þ

where p;M and m refer to phase congruency, maximum and
minimum moments, respectively. The exponential parameters
a;b and c are all set to 1 in this work. More details about this
metric can be found in [24]. The QP measures the extent that
the salient features in the source images are preserved.

5. The universal image quality index (UIQI) [25] based fusion met-
ric QW proposed by Piella and Heijmans [26]. The Q W is defined
as
Q W ¼
X
w2W

cðwÞðkðwÞQ0ðA; FjwÞ þ ð1

� kðwÞÞQ 0ðB; FjwÞÞ; ð13Þ

where Q0ðA; FjwÞ and Q0ðB; FjwÞ are calculated using the method
in [25] in a local sliding window w. The saliency weight kðwÞ is
calculated by

kðwÞ ¼ sðAjwÞ
sðAjwÞ þ sðBjwÞ ; ð14Þ

where the salience measure sðAjwÞ and sðBjwÞ are calculated
with the variance of A and B in window w, respectively. The
cðwÞ is the normalized salience of w among all the local win-
dows. The cðwÞ is obtained by

cðwÞ ¼ maxðsðAjwÞ; sðBjwÞÞP
w02W maxðsðAjw0Þ; sðBjw0ÞÞ : ð15Þ

Based on the UIQI [25], the metric QW firstly addresses the dis-
tortions of coefficient correlation, illumination and contrast
between source images and the fused image, which are in accord
with the characteristics of human visual system. In addition, it
also takes image salience into consideration.
For each of the five metrics, a larger value generally indicates a
better fused result. To guarantee the objectivity of evaluation
results, each of QG;QP and QW is calculated with a widely used
implementation from a third party. Specifically, the code of QG

is available on website [27] implemented by Qu. The code of
QP is obtained from a fusion evaluation toolbox [28] provided



Fig. 3. The source images used in our experiments. (a) Multi-focus images (10 pairs), (b) visible-infrared images (8 pairs), and (c) medical images (8 pairs).
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by Liu (the third author of [24]). The code of QW is provided by
Kang and Li (the first author of [11]). Furthermore, all the param-
eters in the above metrics are set to the default values reported
in the related publications.

4.2. Experimental results on six popular MSTs

In this subsection, six popular MSTs, which are Laplacian pyra-
mid (LP), ratio of low-pass pyramid (RP), discrete wavelet trans-
form (DWT), dual-tree complex wavelet transform (DTCWT),
curvelet transform (CVT) and nonsubsampled contourlet transform
(NSCT), are used to exhibit the advantages of the proposed fusion
framework over the MST- and SR-based methods. First, for each
specific MST, the effectiveness of the combined method is verified
using the above objective fusion metics, and the impact of the
decomposition level is studied by increasing from 1 to 4. Then,
we make an overall comparison in terms of both objective assess-
ment and subjective visual quality. Particularly, for each of the
three categories of image fusion, we give the best-performed
method, which includes a specific MST and its decomposition level,
under the proposed framework. For convenience, a fusion method
under the proposed framework using a certain MST with a decom-
position level of L is denoted as MST-SR-L. For example, DWT-SR-3
represents the method by combining DWT and SR with a 3-level
decomposition. Moreover, for each MST-based method, the decom-
position level is just set to 4 according to the analysis in [11]. For all
the MST- and MST-SR-based methods, the ‘‘max-absolute’’ rule
with a 3� 3 window based consistency verification scheme [5] is
adopted to merge the high-pass bands.

It is worthwhile to notice that the image filters (if any) used in
MSTs are fixed in our experiments for the following two reasons.
First, according to [11], the impact of image filters on the fused
results is generally much weaker than that of either transform
domain or decomposition level. Second, it is very difficult to give
a comprehensive investigation since there may be many selectable
filters for a MST, leading to numerous parameter combinations.
Therefore, in this work, we fix its image filters mainly based on
the related results reported in [11]. The detailed parameter settings
of each MST will be given separately later. For every fusion method
which uses the sparse coding model, the local patch size is set to
8� 8 and the error tolerance e is set to 0.1 according to the analysis
in [14]. The step length of the sliding window in this subsection is
set to 1. The dictionary used in the sparse model is learned by the
K-SVD method [20]. The training data consists of 100,000 8� 8
patches, which are randomly sampled from a database of 40
high-quality natural images. The dictionary size is set to 256 and
the iteration number of K-SVD is fixed to 180.

4.2.1. LP-SR
In all the following tables in this paper, each reported value is

the average result of all the source images in the same category,
and a value labeled in bold indicates the best performance over
all the methods on the corresponding fusion metric. Table 1 lists
the objective assessment of the LP, SR and LP-SR methods. We
can see from Table 1 that for multi-focus image fusion, when the
decomposition level becomes larger, both SD and EN increase,
but QG;QP and QW generally decrease. For either visible-infrared
or medical image fusion, the best performances on all the five met-
rics except for EN in visible-infrared image fusion come from the
LP-SR-4 method. Furthermore, the advantage of the LP-SR-4
method over either the LP or SR method is very clear. In general,
a higher decomposition level leads to a better fusion performance.

4.2.2. RP-SR
The objective assessment of the RP, SR and RP-SR methods is

listed in Table 2. For multi-focus image fusion, the situation is very
similar to that in Table 1. The influence of decomposition level on
the five metrics are very clear. However, for either visible-infrared



Table 1
Objective assessment of the LP, SR and LP-SR methods.

Images Metrics LP SR LP-SR-1 LP-SR-2 LP-SR-3 LP-SR-4

Multi-focus SD 52.3502 51.9298 52.2052 52.2727 52.3038 52.3657
EN 7.3085 7.2997 7.3024 7.3054 7.3086 7.3101
QG 0.7578 0.7666 0.7650 0.7624 0.7600 0.7599
QP 0.9022 0.9064 0.9095 0.9057 0.9035 0.9025
QW 0.9249 0.9264 0.9253 0.9250 0.9251 0.9249

Visible-infrared SD 39.1052 40.5449 43.0950 43.6619 44.7266 45.1038
EN 6.7938 6.8404 6.9619 7.0449 7.1434 7.1237
QG 0.6462 0.6020 0.6433 0.6514 0.6596 0.6698
QP 0.5175 0.4166 0.4981 0.5284 0.5412 0.5514
QW 0.7659 0.6649 0.7438 0.7844 0.7948 0.7960

Medical SD 64.4253 65.1178 65.0250 66.5099 69.8084 72.7315
EN 5.5393 5.7777 5.8087 5.8007 5.8249 5.8372
QG 0.6258 0.5992 0.6218 0.6337 0.6405 0.6459
QP 0.4613 0.4019 0.4356 0.4666 0.4774 0.4905
QW 0.7678 0.7504 0.7659 0.7705 0.7862 0.7996

Table 2
Objective assessments of the RP, SR and RP-SR methods.

Images Metrics RP SR RP-SR-1 RP-SR-2 RP-SR-3 RP-SR-4

Multi-focus SD 52.1889 51.9298 52.0818 52.1169 52.1663 52.2109
EN 7.3079 7.2997 7.3020 7.3069 7.3089 7.3107
QG 0.7566 0.7666 0.7645 0.7599 0.7570 0.7568
QP 0.8855 0.9064 0.8962 0.8885 0.8864 0.8857
QW 0.9224 0.9264 0.9257 0.9229 0.9228 0.9224

Visible-infrared SD 38.6841 40.5449 43.5556 44.9450 45.7618 45.0224
EN 6.7511 6.8404 6.9517 7.0577 7.1423 7.1170
QG 0.4820 0.6020 0.5366 0.5040 0.4896 0.4782
QP 0.3803 0.4166 0.3501 0.3507 0.3727 0.3763
QW 0.5333 0.6649 0.6910 0.6769 0.6424 0.6066

Medical SD 63.1476 65.1178 65.2303 67.1031 70.8526 74.4538
EN 5.7861 5.7777 5.8100 5.8491 5.8637 5.9122
QG 0.4384 0.5992 0.4947 0.4650 0.4554 0.4240
QP 0.3567 0.4019 0.2756 0.2952 0.3372 0.3264
QW 0.5607 0.7504 0.7098 0.6615 0.6366 0.5985
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or medical image fusion, it can be seen from Table 2 that the values
of Q G;Q P and Q W are much lower than the corresponding ones in
Table 1. Therefore, the RP and RP-SR methods may be not applica-
ble for the fusion of multimodal images.
4.2.3. DWT-SR
Table 3 gives the objective assessment of the DWT, SR and

DWT-SR methods. The wavelet basis ‘db1’ is applied in all the
DWT and DWT-SR methods [11]. For multi-focus image fusion,
Table 3
Objective assessment of the DWT, SR and DWT-SR methods.

Images Metrics DWT SR

Multi-focus SD 52.1126 51.9298
EN 7.3405 7.2997
QG 0.7349 0.7666
QP 0.8723 0.9064
QW 0.9227 0.9264

Visible-infrared SD 36.5192 40.5449
EN 6.7329 6.8404
QG 0.5808 0.6020
QP 0.4243 0.4166
QW 0.7195 0.6649

Medical SD 59.2863 65.1178
EN 5.9469 5.7777
QG 0.4921 0.5992
QP 0.2836 0.4019
QW 0.7098 0.7504
the situation is also similar to that of the LP-based results listed
in Table 1, while a main difference is that the DWT-SR-1 method
outperforms the SR method on both Q G and QP . The situation of
either visible-infrared or medical image fusion is exactly the same
as that in Table 1.
4.2.4. DTCWT-SR
The objective assessment of the DTCWT, SR and DTCWT-SR

methods is given in Table 4. In the DTCWT and DTCWT-SR
DWT-SR-1 DWT-SR-2 DWT-SR-3 DWT-SR-4

52.0612 52.0872 52.0264 52.1284
7.3121 7.3225 7.3300 7.3424
0.7668 0.7634 0.7512 0.7453
0.9098 0.9007 0.8792 0.8730
0.9259 0.9248 0.9238 0.9227

42.2491 42.8619 43.4889 44.1496
6.9211 7.0487 7.1284 7.0965
0.6084 0.6045 0.6172 0.6191
0.4358 0.4398 0.4527 0.4547
0.7130 0.7385 0.7547 0.7592

63.7895 63.2669 65.7815 67.4361
5.8087 5.8506 5.8936 5.9854
0.6039 0.6008 0.6112 0.6193
0.4041 0.4086 0.4258 0.4437
0.7492 0.7470 0.7535 0.7627



Table 4
Objective assessment of the DTCWT, SR and DTCWT-SR methods.

Images Metrics DTCWT SR DTCWT-SR-1 DTCWT-SR-2 DTCWT-SR-3 DTCWT-SR-4

Multi-focus SD 52.0593 51.9298 52.0533 52.0337 52.0097 52.0651
EN 7.3192 7.2997 7.3071 7.3103 7.3143 7.3195
QG 0.7553 0.7666 0.7688 0.7642 0.7573 0.7577
QP 0.9016 0.9064 0.9114 0.9081 0.9019 0.9019
QW 0.9253 0.9264 0.9267 0.9277 0.9268 0.9254

Visible-infrared SD 35.4250 40.5449 42.0276 44.0549 45.1063 45.2558
EN 6.6795 6.8404 6.9054 7.0852 7.1394 7.1248
QG 0.6260 0.6020 0.6440 0.6520 0.6603 0.6738
QP 0.4911 0.4166 0.4544 0.4989 0.5396 0.5646
QW 0.7209 0.6649 0.7071 0.7765 0.7870 0.7940

Medical SD 58.5731 65.1178 64.6845 66.0199 67.7566 69.8551
EN 5.8596 5.7777 5.8140 5.8470 5.9070 5.9832
QG 0.5531 0.5992 0.6081 0.6037 0.6135 0.6248
QP 0.3838 0.4019 0.4083 0.4265 0.4314 0.4583
QW 0.7140 0.7504 0.7616 0.7617 0.7783 0.7818
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methods, the image filters for the first-level and other-levels of
decomposition are selected as LeGall 5-3 and Qshift-06 (quarter
sample shift orthogonal 10-10 tap filter with 6-6 nonzero taps),
respectively [11]. It can be seen from Table 4 that the DTCWT-
SR-1 method can outperform the SR method on all the five metrics
for the fusion of multi-focus images. For either visible-infrared or
medical image fusion, the trend that a higher decomposition level
can lead to a better fusion performance still exists.

4.2.5. CVT-SR
Table 5 lists the objective assessment of the CVT, SR and CVT-SR

methods. It can be seen that the best performance on each metric is
exactly the same as that of the LP-based results shown in Table 1
for all the three categories of image fusion.

4.2.6. NSCT-SR
The objective assessment of the NSCT, SR and NSCT-SR methods

is given in Table 6. For the NSCT and NSCT-SR methods, we use the
‘pyrexc’ as the pyramid filter and the ‘vk’ as the directional filter
[11]. Moreover, the direction numbers of the four decomposition
levels from coarse to fine are selected as 4, 8, 8 and 16, respec-
tively. We can see from Table 6 that the NSCT-SR-1 method gets
the first place for Q G;QP and QW with a clear advantage over the
NSCT or SR method for multi-focus image fusion. For either
visible-infrared or medical image fusion, just as most previous
situations, the NSCT-SR-4 method clearly achieves the best
performance over all the fusion methods.
Table 5
Objective assessment of the CVT, SR and CVT-SR methods.

Images Metrics CVT SR

Multi-focus SD 52.0710 51.9298
EN 7.3336 7.2997
QG 0.7425 0.7666
QP 0.8889 0.9064
QW 0.9254 0.9264

Visible-infrared SD 36.1982 40.5449
EN 6.7154 6.8404
QG 0.5903 0.6020
QP 0.4471 0.4166
QW 0.7051 0.6649

Medical SD 58.3636 65.1178
EN 6.0094 5.7777
QG 0.5167 0.5992
QP 0.3219 0.4019
QW 0.7055 0.7504
4.2.7. Overall comparison
At last, for each type of image fusion, we take the related con-

tents in Tables 1–6 into consideration together and seek out some
common regularities among the six MSTs used in the proposed
framework.

The characteristics of multi-focus image fusion can be summa-
rized as the following three points. First, the MST methods can
obtain almost the highest SD and EN while the lowest Q G;Q P and
QW , which indicates that although they can extract enough spatial
details with 4-level decomposition, they are very sensitive to mis-
registration. Thus, the second defect of the MST methods men-
tioned in Section 3 is confirmed. Second, just on the contrary, the
SR method achieves almost the largest QG;Q P and Q W while the
lowest SD and EN, which means that it is robust to mis-registration
but may tend to lose fine details, so the first defect of the SR
method is at least partially verified. Third, the MST-SR methods
can make a balance between the robustness to mis-registration
and the ability of extracting spatial details. When the decomposi-
tion level becomes larger, both SD and EN increase while Q G;QP

and Q W decrease. Moreover, it can be seen that the performance
of the MST-SR-1 method is approximate to that of the SR method,
while the performance of the MST-SR-4 method is approximate to
that of the MST methods. For multi-focus image fusion, compared
with the slight loss of spatial details, the robustness to mis-regis-
tration is more important to the visual quality of the fused image.
Thus, the evaluations on QG;QP and QW are more meaningful to
some extent. Based on this consideration, we can find that some
CVT-SR-1 CVT-SR-2 CVT-SR-3 CVT-SR-4

52.0619 52.0541 52.0517 52.0838
7.3155 7.3247 7.3302 7.3348
0.7630 0.7546 0.7473 0.7429
0.9086 0.9029 0.8959 0.8891
0.9259 0.9255 0.9251 0.9252

42.7476 43.8822 44.5739 44.6091
6.9275 7.0430 7.1505 7.1132
0.6017 0.6062 0.6172 0.6207
0.4712 0.4780 0.4996 0.5132
0.7164 0.7508 0.7679 0.7689

64.3541 64.1187 66.6183 68.8031
5.8223 5.9089 6.0170 6.2298
0.5877 0.6088 0.6133 0.6206
0.4081 0.4139 0.4374 0.4542
0.7475 0.7592 0.7649 0.7734



Table 6
Objective assessment of the NSCT, SR and NSCT-SR methods.

Images Metrics NSCT SR NSCT-SR-1 NSCT-SR-2 NSCT-SR-3 NSCT-SR-4

Multi-focus SD 52.2103 51.9298 52.0193 51.9705 52.0329 52.2146
EN 7.3131 7.2997 7.3074 7.3089 7.3119 7.3165
QG 0.7580 0.7666 0.7702 0.7657 0.7618 0.7582
QP 0.9029 0.9064 0.9137 0.9088 0.9032 0.9031
QW 0.9274 0.9264 0.9294 0.9287 0.9284 0.9274

Visible-infrared SD 36.0833 40.5449 42.7409 44.1395 44.8905 45.1291
EN 6.7048 6.8404 6.9579 7.0951 7.1902 7.1818
QG 0.6510 0.6020 0.6383 0.6494 0.6581 0.6676
QP 0.5225 0.4166 0.4962 0.5267 0.5399 0.5482
QW 0.7343 0.6649 0.7237 0.7418 0.7629 0.7792

Medical SD 59.9674 65.1178 65.1707 66.3673 67.6005 68.8040
EN 5.7358 5.7777 5.8226 5.8408 5.8816 5.9307
QG 0.6104 0.5992 0.6312 0.6391 0.6407 0.6432
QP 0.4687 0.4019 0.4271 0.4414 0.4582 0.4767
QW 0.7459 0.7504 0.7723 0.7849 0.7953 0.7985
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MST-SR-1 methods (the MST is DWT, DTCWT, or NSCT) can gener-
ally make the best balance. On one hand, they can clearly outper-
form the MST methods on QG;QP and Q W . With 1-level
decomposition, the MST-SR-1 method is much more robust to
mis-registration than the MST methods with 4-level decomposi-
tion. Meanwhile, the spatial details which are not fully extracted
by the MST can be mostly compensated by the SR-based approach
used in low-pass fusion. On the other hand, they can outperform
the SR method on four (DWT-SR-1) or all the five (DTCWT-SR-1
and NSCT-SR-1) metrics. With 1-level decomposition, the MST-
SR-1 methods can extract more details than the SR method. Fur-
thermore, although the MST-SR-1 methods are more sensitive to
mis-registration when compared with the SR method, there is even
a slight advantage of the MST-SR-1 methods on metrics QG;QP and
Q W (This is mainly because that Q G;Q P and Q W are also influenced
by the spatial details preserved in the fused image. Moreover, the
SR-based approach used in the low-pass fusion can also somewhat
overcome the sensitivity to mis-registration).

For visible-infrared image fusion, the situation is much simpler
than that of multi-focus image fusion. There are four obvious reg-
ularities we can find from Tables 1–6. First, the SD and EN of all the
six MST methods are clearly lower than those of other methods,
which indicates that the MST methods suffer from low contrast.
Thus, the first shortcoming of the MST methods mentioned
in Section 3 is verified. Second, the SR method does not work well
on almost all the five metrics. Particularly, the QG;QP and Q W of the
Table 7
Objective assessment of the eight selected methods for multi-focus image fusion.

Metrics NSCT SR LP-SR-1 RP-SR-1

SD 52.2103 51.9298 52.2052 52.0818
EN 7.3131 7.2997 7.3024 7.3020
QG 0.7580 0.7666 0.7650 0.7645
QP 0.9029 0.9064 0.9095 0.8962
QW 0.9274 0.9264 0.9253 0.9257

Table 8
Objective assessment of the eight selected methods for visible-infrared image fusion.

Metrics NSCT SR LP-SR-4 RP-SR-4

SD 36.0833 40.5449 45.1038 45.0224
EN 6.7048 6.8404 7.1237 7.1170
QG 0.6510 0.6020 0.6698 0.4782
QP 0.5225 0.4166 0.5514 0.3763
QW 0.7343 0.6649 0.7960 0.6066
SR method are even lower than those of some MST methods. Thus,
the SR method may not be very effective for this category of image
fusion for some reasons (cannot be explained by the objective per-
formance right now). Third, the performances of the RP and RP-SR
methods are poor, which means that they may also lose effective-
ness in this case. Fourth, the other MST-SR methods generally exhi-
bit a clear advantage over both the MST and SR methods on all the
five metrics. Particularly, the advantage will become more obvious
when the decomposition level increases.

The situation of medical image fusion is very similar to that of
visible-infrared image fusion. The MST-SR methods can generally
outperform both the MST and SR methods. Furthermore, from each
table except for Table 2, it can be seen that the MST-SR-4 method
clearly beats all the other methods in terms of all the five metrics.

To make a better comparison, we pick out eight methods from
Tables 1–6 for each category of image fusion. The first two are
the SR method and a specific MST method which owns the best
performance among all the six MST methods. The other six
are obtained by selecting the MST-SR method which has the
optimal decomposition level among f1;2;3;4g from each table.
Tables 7–9 list the selected results for multi-focus, visible-infrared
and medical image fusion, respectively. We can see that the
optimal decomposition level is 1 for multi-focus image fusion
while 4 for the other two types. Furthermore, we can obtain a
more meaningful outcome that the NSCT-SR-1, DTCWT-SR-4 and
LP-SR-4 methods can generally achieve the best performances over
DWT-SR-1 DTCWT-SR-1 CVT-SR-1 NSCT-SR-1

52.0612 52.0533 52.0619 52.0193
7.3121 7.3071 7.3155 7.3074
0.7668 0.7688 0.7630 0.7702
0.9098 0.9114 0.9086 0.9137
0.9259 0.9267 0.9259 0.9294

DWT-SR-4 DTCWT-SR-4 CVT-SR-4 NSCT-SR-4

44.1496 45.2558 44.6091 45.1291
7.0965 7.1248 7.1132 7.1818
0.6191 0.6738 0.6207 0.6676
0.4547 0.5646 0.5132 0.5482
0.7592 0.7940 0.7689 0.7792



Table 9
Objective assessment of the eight selected methods for medical image fusion.

Metrics LP SR LP-SR-4 RP-SR-4 DWT-SR-4 DTCWT-SR-4 CVT-SR-4 NSCT-SR-4

SD 64.4253 65.1178 72.7315 74.4538 67.4361 69.8551 68.8031 68.8040
EN 5.5393 5.7777 5.8372 5.9122 5.9854 5.9832 6.2298 5.9307
QG 0.6258 0.5992 0.6459 0.4240 0.6193 0.6248 0.6206 0.6432
QP 0.4613 0.4019 0.4905 0.3264 0.4437 0.4583 0.4542 0.4767
QW 0.7678 0.7504 0.7996 0.5985 0.7627 0.7818 0.7734 0.7985

Fig. 4. The first example of multi-focus image fusion.

Fig. 5. The second example of multi-focus image fusion.
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all the methods for multi-focus, visible-infrared and medical image
fusion, respectively.

In addition to the quantitative evaluation, we also compare
the fused results of different methods visually. For each cate-
gory of source images, two fusion examples are given. In each
example, the six MST methods, the SR method and the six
MST-SR methods with the optimal decomposition level are
exhibited.

Figs. 4 and 5 show two popular examples of multi-focus image
fusion. In Fig. 4, there is a slight motion of the student’s head in the
scene. We can see that the fused images of all the six MST methods
suffer from undesirable artifacts in that region. The SR and
Fig. 6. The first example of visi

Fig. 7. The second example of vi
MST-SR-1 methods can obtain results in high visual quality. In
Fig. 5, although there is no moving objects, the MST-SR-1 methods
can obtain the fused images with more natural edges (see the
white books in the bookshelf).

Two visible-infrared image fusion examples are shown in Figs. 6
and 7. It can be seen that the visible images mainly capture the
bright objects, while thermal objects such as the pedestrians and
plants can be easily distinguished from the infrared image. Obvi-
ously, the fused images of MST-SR-4 methods always enjoy much
higher contrast than those of MST methods. The SR method is
not very effective in this case. On one hand, some spatial details
are lost (see the plants in Fig. 6 and the buildings in Fig. 7). On
ble-infrared image fusion.

sible-infrared image fusion.



Fig. 8. The first example of medical image fusion.

Fig. 9. The second example of medical image fusion.

Table 10
Objective assessment of the SR and NSCT-SR-1 methods with different step lengths for multi-focus image fusion.

Metrics SR-s1 SR-s2 SR-s4 SR-s8 NSCT-SR-1-s1 NSCT-SR-1-s2 NSCT-SR-1-s4 NSCT-SR-1-s8

SD 51.9298 51.9308 51.9461 52.0250 52.0193 52.0196 52.0339 52.0635
EN 7.2997 7.2987 7.2963 7.2785 7.3074 7.3067 7.3070 7.3037
QG 0.7666 0.7654 0.7631 0.7617 0.7702 0.7691 0.7669 0.7633
QP 0.9064 0.9021 0.8897 0.8622 0.9137 0.9116 0.9049 0.8841
QW 0.9264 0.9259 0.9247 0.9205 0.9294 0.9292 0.9276 0.9247
T 62,001 15,625 3969 1024 62,001 15,625 3969 1024
Time/s 375 94.5 24.1 6.10 352 89 22.9 5.99
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Table 11
Objective assessment of the SR and DTCWT-SR-4 methods with different step lengths for visible-infrared image fusion.

Metrics SR-s1 SR-s2 SR-s4 SR-s8 DTCWT-SR-4-s1 DTCWT-SR-4-s2 DTCWT-SR-4-s4 DTCWT-SR-4-s8

SD 40.5449 40.7993 42.0249 46.0220 45.2558 45.6764 46.3460 48.0796
EN 6.8404 6.8504 6.8757 6.8955 7.1248 7.1246 7.1074 7.0967
QG 0.6020 0.5920 0.5715 0.5269 0.6738 0.6717 0.6621 0.6557
QP 0.4166 0.3941 0.3423 0.3072 0.5646 0.5614 0.5568 0.5258
QW 0.6649 0.6609 0.6516 0.6359 0.7940 0.7928 0.7845 0.7664
T 62,001 15,625 3969 1024 625 169 49 16
Time/s 412 102 26.2 6.80 4.77 1.49 0.62 0.38

Table 12
Objective assessment of the SR and LP-SR-4 methods with different step lengths for medical image fusion.

Metrics SR-s1 SR-s2 SR-s4 SR-s8 LP-SR-4-s1 LP-SR-4-s2 LP-SR-4-s4 LP-SR-4-s8

SD 65.1178 65.3619 66.1954 69.6122 72.7315 72.7981 73.8162 73.6082
EN 5.7777 5.7527 5.7052 5.5537 5.8372 5.7460 5.7059 5.6860
QG 0.5992 0.5876 0.5633 0.5259 0.6459 0.6447 0.6436 0.6375
QP 0.4019 0.3728 0.3009 0.2719 0.4905 0.4888 0.4869 0.4829
QW 0.7504 0.7490 0.7399 0.7110 0.7996 0.7977 0.7969 0.7894
T 62,001 15,625 3969 1024 81 25 9 4
Time/s 275 69.2 17.6 4.50 0.62 0.21 0.10 0.06

Fig. 10. A multi-focus image fusion example with different step lengths.

Fig. 11. A visible-infrared image fusion example with different step lengths.
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Fig. 12. A medical image fusion example with different step lengths.

Fig. 13. The fused results of the GF and NSCT-SR-1 methods on multi-focus images.

160 Y. Liu et al. / Information Fusion 24 (2015) 147–164



Y. Liu et al. / Information Fusion 24 (2015) 147–164 161
the other hand, the spatial consistency of some regions in the fused
images is destroyed (see the square board in Fig. 6 and the street in
Fig. 7). Except for the RP-SR-4 method, other MST-SR-4 methods
can well preserve the spatial consistency.

Figs. 8 and 9 show two fusion examples of multimodal medical
images. The CT and MR images shown in Fig. 8(a) and (b) have been
introduced before. The two source images shown in Fig. 9(a) and
(b) are MR image after Gd-DTPA and T2-weighted MR image,
respectively. We can see that images captured by different modal-
ities reflect different organ information in human body. Just as the
situation of visible-infrared image fusion, the fused images of MST
methods are in low contrast, while the spatial inconsistency and
loss of fine details both exist in the fused images of SR method.
The MST-SR-4 methods (the MST is not RP) especially for the LP-
SR-4 method, can obtain satisfactory results with high contrast,
sufficient fine details and good spatial consistency.

By now, we have experimentally verified most of the theoretical
discussions in Section 3 via the above objective and subjective
comparisons. The only aspect that has not been discussed is the
Fig. 14. The fused results of the GF and DTCWT
computational efficiency, which will be studied in the next
subsection.

4.3. Investigation of step length

In this subsection, the impact of the sliding window’s step
length is studied for the three best-performed fusion methods,
namely, the NSCT-SR-1 method for multi-focus image fusion, the
DTCWT-SR-4 method for visible-infrared image fusion, and the
LP-SR-4 method for medical image fusion. The SR method is used
for comparison. For both the SR and MST-SR methods, the step
length is set to 1, 2, 4 and 8 pixels, respectively. For each method,
a suffix ‘-sk’ is added to its original name, where k belongs to
f1;2;4;8g. For example, NSCT-SR-1-s2 denotes the NSCT-SR-1
method with a step length of 2 pixels. For each category of image
fusion, in addition to the average metric values of all the source
images, the average running time of fusing two source images
(the first pair in each category shown in Fig. 3 is employed, and
the same below) of size 256� 256 is also used to compare the
-SR-4 methods on visible-infrared images.



162 Y. Liu et al. / Information Fusion 24 (2015) 147–164
performances of different fusion methods. All the fusion methods
in this work are implemented in MATLAB on a computer with a
3.0 GHz CPU and 4 GB RAM.

Suppose that there is a matrix (image or low-pass band) of size
H �W and the size of the sliding window is

ffiffiffi
n
p
�

ffiffiffi
n
p

, then the
number of local patches extracted from the matrix is

T ¼ H �
ffiffiffi
n
p
þ 1

s

� �
W �

ffiffiffi
n
p
þ 1

s

� �

� ðH �
ffiffiffi
n
p
þ 1ÞðW �

ffiffiffi
n
p
þ 1Þ

s2 ; ð16Þ

where s is the step length of the sliding window and �d e denotes the
ceiling operation. In the following three tables (Tables 10–12), we
Fig. 15. The fused results of the GF and L
will also give the number (denoted as T) of patch pairs which are
required to be fused with the sparse coding technique.

Table 10 lists the objective assessment of the SR and NSCT-SR-1
methods with different step lengths for multi-focus image fusion.
The NSCT low-pass band has the same size with the original image,
but we can see that the NSCT-SR-1 method is slightly efficient than
the SR method with a same step length. This is mainly because the
patches in the low-pass band is easier to be represented by the
OMP method than those in the original image. When the step
length becomes larger, all the metrics except for SD of both the
SR and NSCT-SR-1 methods will decrease, but the computational
efficiency significantly increases as expected. Furthermore, com-
pared with the SR-s1 method, the NSCT-SR-1-s4 method have a
P-SR-4 methods on medical images.



Table 13
Objective assessment of the GF and proposed fusion methods.

Images Methods SD EN QG QP QW Time/s

Multi-focus GF 52.0242 7.2965 0.7713 0.9167 0.9241 0.19
NSCT-SR-1 52.0193 7.3074 0.7702 0.9137 0.9294 352

Visible-infrared GF 38.4279 6.7942 0.6719 0.5833 0.7175 0.21
DTCWT-SR-4 45.2558 7.1248 0.6738 0.5646 0.7940 4.77

Medical GF 62.6755 5.8208 0.6423 0.5296 0.7426 0.18
LP-SR-4 72.7315 5.8372 0.6459 0.4905 0.7996 0.62
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comparative performance on QG;Q P and Q W with much less run-
ning time. A fusion example is shown in Fig. 10. It can be seen that
when the step length is larger than 2, the quality of the SR meth-
od’s fused results become worse. However, the fused result of
the NSCT-SR-1-s4 method is still in high-quality without any obvi-
ous artifacts.

The objective assessment of the SR and DTCWT-SR-4 methods
with different step lengths for visible-infrared image fusion is
given in Table 11. The trends of all the five fusion metrics are same
as those in Table 10. With 4-level decomposition, the size of the
DTCWT low pass band is 32� 32. Thus, the number of patch pairs
decreases a lot so that there are only 625 patches in the low-pass
band of each source image. Fig. 11 shows an example of this type
of fusion. We can see that the fused results of the SR method suffer
from serious blocking effect when the step length is larger than 2,
while the performance of the DTCWT-SR-4 method is not very sen-
sitive to the step length in this fusion example.

For medical image fusion, Table 12 gives the objective assess-
ment of the SR and LP-SR-4 methods with different step lengths.
The situation is very similar to that in Table 11. Since the LP low-
pass band obtained with 4-level decomposition is just of size
16� 16, there is a further improvement on the computational effi-
ciency. Particularly, the LP-SR-4-s1 method only takes about 0.6 s
to accomplish the fusion task. When the step length becomes lar-
ger, the running time is even shorter while the quality of the fused
results is still promising. As an example shown in Fig. 12, the
blocking effect in the fused images of the SR method significantly
deteriorates their visual quality when the step length is 4 or 8,
while the LP-SR-4-s4 method can still preserve all the important
information.

Based on the above results, it can be seen that the three best-
performed methods under the proposed fusion framework can still
perform well so long as the step length is no more than 4. Addition-
ally, considering that the low-pass bands of most MSTs have smal-
ler size than the original image, the MST-SR methods are usually
much more efficient than the SR method, especially when the
decomposition level is 4.
4.4. Comparison with state of the art

To further evaluate the usefulness of the proposed framework,
we compare the performances of the above three best-performed
methods with the start of the art. In [29], Li et al. proposed an
image fusion method based on guided filtering (GF). Their experi-
mental results show that the GF method can outperform many
classic and latest fusion methods for the fusion of multi-focus
and multimodal images, leading to state-of-the-art results. Fur-
thermore, the GF method has a very high computational efficiency.
Thus, we apply the GF method to make a comparison on all the
source images in Fig. 3. The code of the GF method is available
on website [30], and all the parameters are set to the recom-
mended values reported in [29].

For multi-focus, visible-infrared and medical image fusion, the
fused results of the GF method and the corresponding proposed
method are partially shown in Figs. 13–15, respectively. There
are six examples for each type of fusion with each example being
arranged in a row. We can see from Fig. 13 that the visual differ-
ence between the results of the two methods in multi-focus image
fusion is very small. For visible-infrared image fusion, the proposed
DTCWT-SR-4 method is at least comparable with the GF method.
For the first or fifth example shown in Fig. 14, the DTCWT-SR-4
method outperforms the GF method. However, for the third or
sixth example, the GF method performs better. For medical image
fusion, it can be seen from Fig. 15 that the proposed LP-SR-4
method owns clear advantages over the GF method for all the six
examples. First, the contrast in our fused images is much higher
than that in the fused images of the GF method. Then, some impor-
tant information is lost by the GF method (see the bone regions in
the second example). Finally, the GF method tends to smooth some
tiny edges (see the sixth example), while the LP-SR-4 method can
well preserve them.

Table 13 lists the objective assessment of the GF and proposed
fusion methods. For multi-focus image fusion, the GF method has a
slight advantage over the NSCT-SR-1 method. The most distinctive
difference is the computational cost, for which the NSCT-SR-1
method seems to be too inefficient. Fortunately, we can use
DWT-SR-1 method or larger step length (2 or even 4) to greatly
improve efficiency at a little sacrifice of the fusion quality. For
the other two types of fusion, it can be seen that our methods out-
perform the GF method on all the five metrics except for Q P .
Although the efficiency of our methods is still lower, the gap nar-
rows a lot, especially for the LP-SR-1 method used in medical
image fusion. Moreover, as given in Table 12, the average running
time of the LP-SR-1 method will decrease to 0.21 s when the step
length is set to 2. Even so, the quality of the fused results can still
be maintained.
5. Conclusion

In this paper, we present a general image fusion framework
with multi-scale transform (MST) and sparse representation (SR).
In the framework, the low-pass MST bands are merged with the
SR-based scheme while the high-pass bands are fused using the
conventional ‘‘max-absolute’’ rule. The advantages of the proposed
fusion framework over conventional MST- and SR-based methods
are first analyzed theoretically, and then experimentally verified.
In our experiments, six popular multi-scale transforms (LP, RP,
DWT, DTCWT, CVT and NSCT) with different decomposition levels
ranging from one to four are first employed for the fusion of multi-
focus, visible-infrared and medical images, respectively. Then, the
impact of the sliding window’s step length is studied. In the final,
we compare our fused results with state-of-the-art level. Some
main conclusions and contributions of this paper are briefly sum-
marized as follows.

For multi-focus image fusion, the proposed MST-SR based
methods can improve algorithm’s robustness to mis-registration
via 1-level decomposition. Meanwhile, it can overcome the inclina-
tion of the SR-based method to smooth fine details with MST. For
multimodal image fusion, our fusion framework can not only
obtain higher contrast than the MST methods, but also extract
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more fine details and preserve better spatial consistency than the
SR-based method. Furthermore, the proposed method is more effi-
cient than the SR-based method since the time-consuming sparse
coding technique is performed on low-pass bands, which may
own a smaller size as well as an allowable enlargement for the step
length. In particular, we give a best-performed method under the
proposed framework for each category of image fusion, namely,
the NSCT-SR-1 method for multi-focus image fusion, the DCTWT-
SR-4 method for visible-infrared image fusion, and the LP-SR-4
method for medical image fusion. Comparisons with the latest
GF-based method demonstrate that these three specific MST-SR
based methods can obtain state-of-the-art results. Particularly,
we believe that the LP-SR-4 method owns great potential in med-
ical image fusion for its simple implementation, high efficiency and
good performance. An image fusion toolbox which contains the
MATLAB implementation of both the proposed and the compared
methods is available on http://home.ustc.edu.cn/~liuyu1.
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