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Abstract— As an effective way to integrate the information
contained in multiple medical images with different modali-
ties, medical image fusion has emerged as a powerful tech-
nique in various clinical applications such as disease diagnosis
and treatment planning. In this paper, a new multimodal
medical image fusion method in nonsubsampled shearlet trans-
form (NSST) domain is proposed. In the proposed method,
the NSST decomposition is first performed on the source images
to obtain their multiscale and multidirection representations.
The high-frequency bands are fused by a parameter-adaptive
pulse-coupled neural network (PA-PCNN) model, in which all
the PCNN parameters can be adaptively estimated by the input
band. The low-frequency bands are merged by a novel strategy
that simultaneously addresses two crucial issues in medical image
fusion, namely, energy preservation and detail extraction. Finally,
the fused image is reconstructed by performing inverse NSST on
the fused high-frequency and low-frequency bands. The effec-
tiveness of the proposed method is verified by four different
categories of medical image fusion problems [computed tomog-
raphy (CT) and magnetic resonance (MR), MR-T1 and MR-T2,
MR and positron emission tomography, and MR and single-
photon emission CT] with more than 80 pairs of source images
in total. Experimental results demonstrate that the proposed
method can obtain more competitive performance in comparison
to nine representative medical image fusion methods, leading
to state-of-the-art results on both visual quality and objective
assessment.

Index Terms— Activity level measure, image fusion, medical
imaging, nonsubsampled shearlet transform (NSST), pulse
coupled neural network (PCNN).

I. INTRODUCTION

AS is well known, medical imaging is acting as an
increasingly critical role in various clinical applications

such as diagnosis, treatment planning, and surgical navigation.
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Due to the diversity in imaging mechanisms, medical images
with different modalities focus on different categories of
organ/tissue information. The computed tomography (CT)
imaging can precisely detect dense structures such as bones
and implants. The magnetic resonance (MR) imaging provides
high-resolution anatomical information for soft tissues, but is
less sensitive to the diagnosis of fractures than CT. In addition
to these anatomical imaging techniques, the functional imaging
techniques such as positron emission tomography (PET) and
single-photon emission CT (SPECT) are often applied to
reflect the metabolism information of organism, which is of
great significance to many scenarios such as vascular disease
diagnosis and tumor detection. Nevertheless, the spatial reso-
lution of functional images is usually very low. To obtain suffi-
cient information for accurate diagnosis, physicians often need
to sequentially analyze medical images that are captured with
different modalities, but this separating manner may still bring
inconvenience in many cases. An effective way to solve this
problem is known as medical image fusion technique [1], [2],
which aims at generating a composite image to integrate
the complementary information contained in multiple medical
images with different modalities.

A variety of medical image fusion methods have been
proposed over the past decades [3]–[13]. Since there is strong
evidence that the human visual system (HVS) processes
information in a multiresolution fashion [14], most medical
image fusion methods are introduced under a multiscale trans-
form (MST)-based framework to pursue perceptually good
results. In general, the MST-based fusion methods consist
of three basic steps. First, the source images are converted
into an MST domain. Then, the transformed coefficients are
merged using some predesigned fusion strategies. Finally,
the fused image is reconstructed from the merged coeffi-
cients by performing the inverse transform. MST approaches
that are commonly used in image fusion include pyramid-
based ones (e.g., Laplacian pyramid (LP) [15] and morpho-
logical pyramid [16]), wavelet-based ones (e.g., discrete
wavelet transform [17] and dual-tree complex wavelet trans-
form [18]), and multiscale geometric analysis (MGA)-based
ones (e.g., nonsubsampled contourlet transform (NSCT) [19]
and nonsubsampled shearlet transform (NSST) [20]). Among
them, the MGA-based methods, especially for the NSCT- and
NSST-based methods, have exhibited significant advantages
over other methods on account of their higher effectiveness
in image representation. In addition to the selection of image
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transform, the design of fusion strategies for both the high-
frequency and low-frequency coefficients is another crucial
issue in MST-based fusion methods. Traditionally, the activity
level of high-frequency coefficients is usually calculated based
on their absolute values using a pixel-based or window-
based manner, and then a simple fusion rule such as choose
max or weighted average is applied to obtain the fused coeffi-
cients. The most popular low-frequency fusion strategy in the
early days is just averaging the coefficients from different
source images. Plenty of studies in the literature indicate
that the performances of the MST-based methods could be
significantly improved by designing more effective fusion
strategies. In recent years, many novel MST-based medical
image fusion methods have been proposed by developing
more advanced image transforms and more complicated fusion
strategies [21]–[30]. Here, we just give a few latest examples.
Zhu et al. [28] proposed a medical image fusion method
based on cartoon-texture decomposition (CTD) and applied
a sparse representation (SR)-based fusion strategy [31] to
merge the decomposed coefficients. Du et al. [29] proposed a
multiscale decomposition approach based on local Laplacian
filtering (LLF) for medical image fusion and introduced an
information of interest (IOI)-based strategy to fuse the high-
frequency components. Liu et al. [30] proposed a convolu-
tional neural network (CNN)-based fusion strategy [32] under
the LP-based framework for medical image fusion.

Pulse coupled neural network (PCNN) [33], a biologically
inspired neural network derived from Echorn’s [34] cortical
model that owns characteristics including global coupling and
pulse synchronization, has been verified a very suitable tool
for image fusion. Specifically, PCNN is often used to extract
the activity level of the decomposed coefficients obtained
by a certain MST for image fusion. The firing times of
each output neuron over a number of iterations are typically
employed to measure the activity level of its corresponding
coefficient. A popular PCNN-based fusion strategy for the
NSCT-based image fusion was introduced by Qu et al. [21].
Das and Kundu [23] proposed a fuzzy-adaptive reduced
PCNN (RPCNN)-based fusion strategy in NSCT domain for
medical image fusion. Due to the strong association with the
information processing mechanism of HVS, the PCNN-based
fusion strategies have shown advantages over the conventional
ones that are directly based on the decomposed coefficients.
However, PCNN models generally contain a series of free
parameters and the quality of fusion results relies heavily on
these parameter settings. In most cases, the PCNN parame-
ters are manually fixed as constants in an algorithm based
on empirical or experimental results, which may limit the
algorithm performance to a great extent.

In this paper, a multimodality medical image fusion method
based on NSST is proposed. We mainly focus on the design
of fusion strategies for both the high-frequency and low-
frequency coefficients. The main contributions of this paper
are outlined as follows.

1) We introduce a parameter-adaptive PCNN (PA-PCNN)
model [35] into the field of image fusion. The PA-PCNN
model is adopted to fuse high-frequency coefficients
with all the PCNN parameters adaptively calculated

based on the input bands, which can overcome the
difficulty of setting free parameters in the conventional
PCNN models. In addition, the PA-PCNN is experimen-
tally verified to have a fast convergence speed with fewer
iterations than some commonly used PCNN models
in image fusion. To the best of our knowledge, this is
the first time that the PA-PCNN model [35] is applied
to image fusion.

2) We present a novel low-frequency fusion strategy that
simultaneously addresses two crucial factors in medical
image fusion, namely, energy preservation and detail
extraction. To this end, two new activity level measures
named weighted local energy (WLE) and weighted
sum of eight-neighborhood-based modified Laplacian
(WSEML) are defined in this paper, respectively.

3) We propose a new medical image fusion method
in the NSST domain by applying the fusion strategies
mentioned earlier. Extensive experiments are conducted
to verify the effectiveness of our method on four
different types of medical image fusion problems
(CT and MR, MR-T1 and MR-T2, MR and PET,
and MR and SPECT) with more than 80 pairs of
source images. Nine representative medical image fusion
methods are used for comparison and several of
them were proposed very recently. Experimental results
demonstrate that the proposed method can achieve state-
of-the-art performances on both the visual quality and
objective assessment.

The rest of this paper is organized as follows. In Section II,
the theory of NSST is briefly introduced. Section III presents
the adopted PA-PCNN model and discusses its feasibility
for image fusion. The detailed NSST-based fusion scheme
is presented in Section IV. Section V gives the experi-
mental results and discussion. Finally, this paper is concluded
in Section VI.

II. NONSUBSAMPLED SHEARLET TRANSFORM

Shearlet [36] is a relatively new member in the family of
MGA. In comparison to some earlier multiscale approaches for
image representation such as pyramid, wavelet, and curvelet,
shearlet can capture the details/features of an image at diverse
directions more effectively and is able to obtain a more
optimal representation (often measured by the sparsity) for
the targeting image. The implementation process of shearlet
transform (ST) is similar to that of contourlet transform, but
the directional filters in contourlet are replaced by the shearing
filters. An important advantage of shearlet over contourlet
is that there are no restrictions on the number of directions
in shearlet. Moreover, the inverse ST only needs a summa-
tion of the shearing filters, instead of inverting a directional
filter bank in contourlet, which improves the computational
efficiency.

Despite of the above-mentioned advantages, the subsam-
pling scheme in the standard ST causes its lack of shift
invariance, which is a very critical property for image fusion
to prevent undesirable Gibbs phenomenon. Having shift invari-
ance, the related image fusion algorithm can be more robust
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Fig. 1. Schematic of a two-level NSST decomposition.

to misregistration1 by developing region-based fusion strate-
gies [13]. To overcome this defect, the nonsubsampled version
of ST, known as NSST, has been introduced based on nonsub-
sampled pyramid filters (NSPFs) and shift-invariant shearlet
filter banks (SFBs) [36]. Specifically, the NSPF is employed
to obtain the multiscale decomposition of an input image
from fine to coarse. If a L-level decomposition is applied,
we can get L + 1 subbands of the same size as the input
image, which includes L high-frequency bands and one low-
frequency band. For each decomposition level, an SFB is
applied to obtain the multidirectional representations of the
corresponding band. Fig. 1 shows the schematic of a two-
level NSST decomposition. The inverse NSST can precisely
reconstruct the original image with two steps. The first step is
to generate the nonsubsampled pyramid, in which each scale is
obtained by accumulating the filtered results of the decompo-
sitions at all directions using shearing filter banks. The second
step is to reconstruct the image by the obtained nonsubsampled
pyramid from coarse to fine using the reconstruction filters.
More details about NSST could be found in [36]. Due to
the properties such as multiscale, multidirection, and shift
invariance, NSST has been recognized as a very effective
approach for image fusion [37]–[39]. Also, it is selected as
the MST for proposed fusion method in this paper.

III. PARAMETER-ADAPTIVE PCNN

Unlike the most existing artificial neural networks, PCNN is
based on iterative calculation and does not require any training
process. The PCNN model applied in image processing
tasks is generally a single-layer network with a 2-D array
input. There is a one-to-one correspondence between input
image pixels and PCNN neurons, so the number of neurons
is equal to that of pixels. Each neuron is linked with
its neighboring neurons for information transmission and
coupling. As mentioned earlier, one key challenge that exists
in conventional PCNN models is the setting of several free
parameters such as linking strength, various amplitudes, and
decay coefficients [33], [40]. In order to avoid the difficulty

1In the field of pixel-level image fusion, a common assumption is that the
source images have been accurately preregistered by some image registration
approaches. The term misregistration here indicates some slight misalignments
between source images due to factors such as slight motion of objects or the
performance limitation of the applied image registration method. Large degree
of misregistration goes outside the scope of most image fusion papers.

Fig. 2. Architecture of the PA-PCNN model used in the proposed image
fusion method.

in manually setting these parameters, Chen et al. [35] recently
proposed a simplified PCNN (SPCNN) model along with an
automatic parameter setting approach for image segmentation.
The SPCNN model is described as follows:

Fij [n] = Si j (1)

Li j [n] = VL

∑

kl

Wi jkl Ykl [n − 1] (2)

Uij [n] = e−α f Ui j [n − 1] + Fij [n](1 + βLi j [n]) (3)

Yi j [n] =
{

1, if Uij [n] > Eij [n − 1]
0, otherwise

(4)

Eij [n] = e−αe Ei j [n − 1] + VE Yi j [n]. (5)

In the above-mentioned SPCNN model, Fij [n] and Li j [n] are
feeding input and linking input of the neuron at position (i, j)
in iteration n, respectively. Fij [n] is fixed to the intensity of
input image Si j during the whole iteration. Li j [n] is associated
with the previous firing status of eight neighboring neurons
through the synaptic weights

Wijkl =
⎡

⎣
0.5 1 0.5
1 0 1

0.5 1 0.5

⎤

⎦.

The parameter VL is the amplitude of linking input.
The internal activity Uij [n] consists of two terms. The first
term e−α f Ui j [n−1] is a decay of its previous value, where the
parameter α f is an exponential decay coefficient. The second
term Fij [n](1+βLi j [n]) is the nonlinear modulation of Li j [n]
and Fij [n], where the parameter β is the linking strength.
The output module of the PCNN is known as pulse gener-
ator [33], which determines the firing events of the model.
In particular, its output Yi j [n] has two status: fired (Yi j [n] = 1)
and unfired (Yi j [n] = 0). The status depends on its two inputs,
namely, current internal activity Uij [n] and previous dynamic
threshold Eij [n − 1]. As given in (4), the firing condition is
that Uij [n] is larger than Eij [n − 1]. Please refer to [33] for
more details about firing. The final step in the iteration is
updating the dynamic threshold according to (5), where αe

and VE are the exponential decay coefficient and amplitude
of Eij [n], respectively. The SPCNN model is initialized as
Yi j [0] = 0, Uij [0] = 0 and Eij [0] = 0. As a result, all
the nonzero intensity neurons will fire in the first iteration,
because the firing condition is always valid (Uij [1] = Si j > 0).
Fig. 2 shows the architecture of the SPCNN model.
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Fig. 3. Schematic of the proposed medical image fusion method.

There exist five free parameters in the SPCNN model: α f ,
β, VL , αe, and VE . Moreover, it can be observed from (1) to (5)
that either β or VL just acts as the weight of

∑
kl Wi jkl

Ykl [n − 1], so they can be tackled as a whole βVL in the
SPCNN model. Let λ = βVL denote the weighted linking
strength, thus there are actually four parameters in SPCNN.
According to the analysis in [35], all of these parameters can
be adaptively calculated as

α f = log(1/σ (S)) (6)

λ = (Smax/S′) − 1

6
(7)

VE = e−α f + 1 + 6λ (8)

αe = ln

⎛

⎝
VE
S ′

1−e−3α f

1−e−α f
+ 6λe−α f

⎞

⎠ (9)

where σ (S) indicates the standard deviation of the input
image S of range [0, 1]. S′ and Smax denote the normalized
Otsu threshold and the maximum intensity of the input image,
respectively. Please refer to [35] for more details about the
parameter settings.

The above-mentioned PA-PCNN model is primarily
proposed for image segmentation in [35]. In this paper,
we argue that it is also effective for image fusion. In particular,
it is reasonable to apply the PA-PCNN model to fuse the high-
frequency coefficients obtained by an MST. Actually, in the
SPCNN-based image segmentation method [35], the target
image is used as the PCNN input and the segmentation
principle is essentially based on a pixel intensity. The role
of PCNN in image segmentation is to transmit the intensity
information from one pixel to its surrounding pixels, so that
the information of neighboring pixels can be coupled and
comprehensively utilized. For the fusion of high-frequency
MST coefficients, the absolute values of coefficients are widely
recognized as containing the activity level information, and a
higher value is more likely to indicate a higher activity level
among multiple source images. Considering that the PCNN
model can tackle the pixel intensity for segmentation, it is
also able to distinguish the absolute values of high-frequency
coefficients from different source images. The advantage of

PCNN in image fusion is similar to that in segmentation,
namely, the activity level information of neighboring pixels
can be transmitted to each other to achieve a more robust
activity measure. Based on the above-mentioned considera-
tions, it can be found that the problem of PCNN-based image
fusion has a strong correlation with the PCNN-based image
segmentation, which motivates us to introduce the above-
mentioned PA-PCNN model into the fusion of high-frequency
MST coefficients.

IV. PROPOSED FUSION METHOD

A. Overview

Fig. 3 shows the schematic of the proposed medical image
fusion method. For the sake of simplicity, the fusion scheme
presented in this section is based on the assumption that there
are two preregistered source images to be fused. The proposed
fusion method can be straightforwardly extended to fuse
more than two source images. The detailed fusion scheme
consists of four steps: NSST decomposition, fusion of high-
frequency bands, fusion of low-frequency bands, and NSST
reconstruction.

B. Detailed Fusion Scheme

1) NSST Decomposition: A L-level NSST decomposition
is performed on two source images A and B to obtain
their decomposed bands {H l,k

A , L A} and {H l,k
B , L B }, respec-

tively. The notation H l,k
A denotes a high-frequency band of A

at decomposition level l and direction k, while the notation L A

denotes the low-frequency band of A. The meanings of H l,k
B

and L B are the same with respect to B .
2) Fusion of High-Frequency Bands: The PA-PCNN model

presented in Section III is applied to fuse the high-frequency
bands. Based on the discussion in Section III, the absolute
value map of a high-frequency band is employed as the
network input, namely, the feeding input is Fij [n] =
|H l,k

S |, S ∈ {A, B}. The activity level of a high-frequency
coefficient is measured by the total firing times during the
whole iteration. According to the PA-PCNN model described
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from (1) to (5), the firing times can be accumulated by adding
the following step at the end of each iteration:

Ti j [n] = Ti j [n − 1] + Yi j [n]. (10)

Thus, the firing times of each neuron is Ti j [N], where N is
the total number of iterations. For the corresponding high-
frequency bands H l,k

A and H l,k
B , their PA-PCNN firing times

can be calculated and denoted by T l,k
A,i j [N] and T l,k

B,i j [N],
respectively. The fused band is obtained using the following
rule:

H l,k
F (i, j) =

{
H l,k

A (i, j), if T l,k
A,i j [N] ≥ T l.k

B,i j [N]
H l,k

B (i, j), otherwise
(11)

which indicates that the coefficient with larger firing times is
selected as the fused coefficient.

3) Fusion of Low-Frequency Bands: The fusion strategy for
low-frequency bands also has a significant impact on the final
fusion quality. In our method, a strategy that simultaneously
addresses two crucial factors (energy preservation and detail
extraction) in medical image fusion is designed.

Since an image can be generally viewed as a 2-D piecewise
smooth signal [36], its energy is mostly contained in its low-
frequency component.2 In medical image fusion, the inten-
sities of different source images at the same location may
vary significantly, because the source images are captured with
different imaging mechanisms. Therefore, the conventional
averaging-based low-frequency fusion rule tends to cause the
loss of energy in the fused image [8]. As a result, the bright-
ness of some regions may have a sharp decrease, leading to
inferior visual perception. To address this issue, we define an
activity level measure called WLE as

WLES(i, j) =
r∑

m=−r

r∑

n=−r

W

×(m+r +1, n+r +1) LS(i +m, j +n)2 (12)

where S ∈ {A, B} and W is a (2r + 1) × (2r + 1) weighting
matrix with radius r . For each element in W , its value is set to
22r−d , where d is its four-neighborhood distance to the center.
As an example, the 3 × 3 normalized version of W is

1

16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦.

Due to some factors (e.g., computational efficiency), there
always exists a limitation on the number of NSST decomposi-
tion level. Accordingly, the low-frequency band still contains
some detail information. To fully extract the details from
source images, an activity level measure named weighted sum
of WSEML is defined as

WSEMLS(i, j) =
r∑

m=−r

r∑

n=−r

W (m+r + 1, n+r + 1)

× EMLS(i + m, j + n) (13)

2The term energy here originates from Parseval’s Theorem (also known
as Rayleigh Energy Theorem), although the theorem is not strictly valid for
NSST decomposition because of its redundancy. Specifically, the energy of a
band is defined as the sum of squares of all the band coefficients.

where S ∈ {A, B}, W is the weighting matrix that has the
same definition as that in (12), and the EML is the WSEML

EMLS(i, j)

= |2S(i, j) − S(i − 1, j) − S(i + 1, j)|
+ |2S(i, j) − S(i, j − 1) − S(i, j + 1)|
+ 1√

2
|2S(i, j) − S(i − 1, j − 1) − S(i + 1, j + 1)|

+ 1√
2
|2S(i, j)−S(i − 1, j + 1) − S(i + 1, j − 1)|. (14)

In comparison to the original modified Laplacian (ML) [41],
the EML takes the effect of diagonal coefficients into account
to make full use of neighboring information. The weights of
two diagonal terms are set to 1/

√
2 according to the Euclidean

distance.
The final activity level measure of low-frequency band is

defined as the multiplication of WLE and WSEML, so the
low-frequency fused band is calculated by the following rule:

L F (i, j) =

⎧
⎪⎨

⎪⎩

L A(i, j), if WLEA(i, j) · WSEMLA(i, j)

≥ WLEB(i, j) · WSEMLB(i, j)

L B(i, j), otherwise.

(15)

4) NSST Reconstruction: The fused image F is finally
reconstructed by performing the inverse NSST over the fused
bands {H l,k

F , L F }.
The main steps of the proposed medical image fusion

method are summarized in Algorithm 1.

C. Extension to Grayscale and Color Image Fusion

This section extends the proposed method to fuse a
grayscale image and a color image, which is the typical
situation of anatomical and functional image fusion. In medical
imaging, the functional images such as PET and SPECT
images are usually shown as pseudocolor images, and they
can be treated as color images with RGB channels in the
fusion process [6], [27], [30], [42]. One possible way for
grayscale and color image fusion is merging the grayscale
image with each channel of the color image independently and
then combining the three fused channels to construct an RGB
image, but this may cause serious color distortion. A more
effective approach is to separate the brightness or luminance
component from the color image for fusion via some color
space transform methods. In this paper, the YUV color space
is applied to accomplish the grayscale and color image fusion
issues. The YUV space encodes a color image into one
luminance component (Y) and two chrominance components
(U and V) taking human perception into account, which makes
it a popular approach in color image pipeline. In particular,
it has been verified a very effective tool for anatomical and
functional image fusion [27], [30]. Specifically, the fusion
scheme contains the following three steps. First, the RGB
color image is converted into YUV color space to obtain the
Y, U, and V channels. Then, the grayscale image and the Y
channel are fused using the proposed fusion scheme described
in Section IV-B. Finally, the fused color image is obtained by
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Algorithm 1 Proposed Medical Image Fusion Algorithm
Input: the source images: A and B .
Parameters: the number of NSST decomposition levels: L, the number of directions at each decomposition level: K (l), l ∈
[1, L], the number of PA-PCNN iterations: N , the radius of weighting kernel: r
Part 1: NSST decomposition
01: For each source image S = [A, B]
02: Perform NSST decomposition on S to obtain {H l,k

S , LS}, l ∈ [1, L], k ∈ [1, K (l)];
03: End
Part 2: Fusion of high-frequency bands
04: For each level l = 1 : L
05: For each direction k = 1 : K (l)
06: For each source image S = [A, B]
07: Initialize the PA-PCNN model: Yi j [0] = 0, Uij [0] = 0, Eij [0] = 0, Ti j [0] = 0 and Fij [n] =

∣∣∣H l,k
S

∣∣∣, n ∈ [1, N];
08: Estimate the PA-PCNN parameters using Eq. (6)–(9);
09: For each iteration n = 1 : N
10: Calculate the PA-PCNN model by Eq. (2)–(5) and Eq. (10);
11: End
12: End
13: Merge H l,k

A and H l,k
B using Eq. (11) to obtain H l,k

F ;
14: End
15: End
Part 3: Fusion of low-frequency bands
16: For each source image S = [A, B]
17: Calculate the WLE for LS using Eq. (12);
18: Calculate the WSEML for LS using Eq. (13)-(14);
19: End
20: Merge L A and L B using Eq. (15) to obtain L F ;
Part 4: NSST reconstruction
21: Perform inverse NSST on {H l,k

F , L F } to obtain F ;
Output: the fused image F .

performing inverse YUV conversion (YUV to RGB) over the
fused Y channel, the original U channel, and the original V
channel. Fig. 4 shows the schematic of the grayscale and color
image fusion method.

V. EXPERIMENTS

A. Experimental Settings

1) Source Images: To verify the effectiveness of the
proposed method, 83 pairs of multimodal medical images,
which include 10 pairs of MR and CT images, 13 pairs of
T1-weighted MR (MR-T1) and T2-weighted (MR-T2) images,
30 pairs of MR and PET images, and 30 pairs of MR and
SPECT images, are used in our experiments. All of these
source images are collected from the database of Whole Brain
Atlas [43] created by Harvard Medical School and have been
widely adopted in previous publications related to medical
image fusion. All the source images have the same spatial
resolution of 256 × 256 pixels. The source images in each
pair have been accurately registered.

2) Methods for Comparison: The proposed fusion method
is compared to nine representative methods that are: the NSCT-
SF-PCNN method [21], the SR with simultaneous orthog-
onal matching pursuit (SR-SOMP) method [4], the guided
filtering (GF) method [11], the phase congruency and direc-
tive contrast in NSCT domain (NSCT-PCDC) method [22],

the NSCT-RPCNN method [23], the LP-SR method [8],
the CTD-SR method [28], the LLF-IOI method [29], and the
LP-CNN method [30]. Among them, the CTD-SR, LLF-IOI,
and LP-CNN methods were just recently proposed within
1 year. The NSCT-SF-PCNN and NSCT-RPCNN are two
well-known MST-based methods using PCNN-based fusion
strategies, which have the similar framework of the proposed
method. The other methods are also of high popularity in the
past few years. The source codes of the NSCT-SF-PCNN, GF,
NSCT-PCDC, NSCT-RPCNN, LP-SR, and LLF-IOI methods
are publicly available online at websites [44]–[49], respec-
tively. The implementations of the other three methods are
provided by their respective authors. All the parameters
in these compared methods are set to the default values
given by their authors.

3) Objective Evaluation Metrics: To quantitatively assess
the performances of different methods, five widely recog-
nized objective fusion metrics are applied in our experiments.
They are the standard deviation (SD), entropy (EN), localized
mutual information (LMI) [50], Piella’s structure similarity-
based metric QW [51], and the human visual perception-
based metric visual information fidelity fusion (VIFF) [52].
SD measures the overall contrast of the fused image while
the amount of information contained in the fused image can
be reflected by the EN. LMI is a localized variation of
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Fig. 4. Schematic of the grayscale and color image fusion method.

conventional mutual information (MI) index based on quadtree
decomposition, and it can overcome several defects of MI
when evaluating fusion performance. The metric QW mainly
values the structure similarity between the fused images and
source images by simultaneously addressing coefficient corre-
lation, illumination, and contrast. It also takes image salience
into account during the calculation. VIFF is a newly proposed
metric by measuring the visual information fidelity between
the fused image and each source image based on the Gaussian
scale mixture model, the distortion model, and the HVS model.
For all the above five metrics, a larger score indicates a better
performance. Please refer to the related references for more
details about these metrics.

4) Experimental Environment: All the experiments are
conducted on a PC that equipped with an Intel(R) Core(TM)
i7-6700 K CPU (4.00 GHz) and 32-GB RAM. The software
environment is MATLAB R2013b installed on Win 7 64-bit
operating system.

B. Analysis of Algorithm Parameters

The proposed fusion method has three main free parameters:
1) the number of NSST decomposition levels3 L; 2) the
number of PA-PCNN iterations N ; and 3) the radius r of
weighting kernel used in WLE and WSEML. In this section,
we analyze the impacts of these parameters on fusion perfor-
mance via the above-mentioned five objective fusion metrics.
For each metric, the average score of all the testing examples
in each category of fusion problem is used for evaluation.
A popular approach for investigating the impacts of multiple
parameters is known as controlling for a variable, which has
also been widely adopted in the study of image fusion [9],
[11], [29]. Considering the limitation of paper length, it is
practically impossible to list all the results as it has a very
large scale (a “cube” of results and too many combinations).
For the sake of clarity, we just show one set of results for
each parameter, in which the other two parameters are set to
well-performed values (this is a commonly used manner in the
literature [9], [11], [29]).

3In this paper, the number of directions at each decomposition level is set
according to the number of decomposition level, as discussed later.

TABLE I

NUMBER OF NSST DECOMPOSITION LEVELS AND THE CORRESPONDING

DIRECTION SETTINGS FOR PARAMETER ANALYSIS

1) Number of NSST Decomposition Levels: In this set of
experiments, the number of NSST decomposition levels L
is set to 1–6, respectively. Another important issue to be
determined is the number of directions at each decomposition
level. In multiscale geometric transform (e.g., NSCT and
NSST)-based image processing applications including image
fusion [8], [21]–[23], [27], the number of directions (usually
set to small powers of 2, such as 4, 8, and 16) is generally
under the trend of successively decrease from a finer scale
to a coarser scale (refer to Fig. 1 and note that the finest
scale is first generated in NSST decomposition). In this paper,
the numbers of directions are empirically set to 16, 16, 8, 8, 4,
and 4 for the first six scales from fine to coarse. Therefore,
the detailed direction settings for different values of L can
be listed in Table I. In this situation, it is not difficult to
observe that a smaller number of levels (e.g., three levels)
decomposition is exactly a subset of a larger number of levels
(e.g., four levels) decomposition in terms of high-frequency
fusion. The first row of Fig. 5 shows the results indicating the
influence of parameter L. The other two parameters are fixed
as N = 110 and r = 1. It can be seen that the scores of all
the metrics generally rise with the increase in L, but tend to
be stable when L ≥ 4. In some cases (e.g., QW and VIFF),
the scores even have a tendency to decrease when L ≥ 4.
Therefore, and also considering that the computational cost
will increase when L becomes larger, it is appropriate to apply
a four-level decomposition in our method.

2) Number of PA-PCNN Iterations: The number of
PA-PCNN iterations is, respectively, set to 50, 70, 90, 110,
130, and 150 to study its influence on the fusion performance.
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Fig. 5. Objective performance of the proposed method with different parameters including the number of NSST decomposition levels L , the number of
PA-PCNN iterations N , and the radius r of weighting kernel. First row: impact of L with N = 110 and r = 1. Second row: impact of N with L = 4
and r = 1. Third row: impact of r with L = 4 and N = 110.

The results are shown in the second row of Fig. 5, where
the other two parameters are fixed as L = 4 and r = 1.
It is clear that the metric scores in most cases are convergent
when N = 110, while some scores become stable just
after about 90 iterations. Thus, N = 110 is a reasonable
choice if a uniform setting is required. It is worthwhile to
note that image fusion methods using conventional PCNN
models usually need more iterations to reach convergence.
For instance, 200 iterations are adopted in [21] and [23].
A possible explanation for this issue is that the parameters
of PA-PCNN are adaptively calculated, rather than fixed to
predetermined values, leading to a faster convergence speed.
An obvious advantage of fewer iterations is its potential to
achieve a higher computational efficiency.

3) Radius of Weighting Kernel: To investigate the impact of
this parameter, three different values (r = {1, 2, 3}) are tested
in this set of experiments, so the corresponding kernel sizes
are 3 × 3, 5 × 5, and 7 × 7, respectively. In addition, the sizes
of weighting kernels used in WLE and WSEML are set to
the same. The third row of Fig. 5 exhibits the results with
L = 4 and N = 110. In contrast to the above-mentioned two
parameters, we can see that the effects of r on all the five
metrics are so slight that can be ignorable. Considering the
factor of computational cost, the 3×3 kernel (r = 1) is surely
the best solution.

Based on the earlier discussions, the setting {L = 4,
N = 110, r = 1} is adopted in all the following
experiments.

C. Comparison to Other Image Fusion Methods

In this section, the proposed method is compared with
other approaches on three aspects: visual quality, objective
assessment, and computational efficiency.

1) Visual Quality: For each category of the above-
mentioned four medical image fusion problems, three sets
of fusion results are given. Furthermore, two representative
regions (mainly from the viewpoint of image processing
community such as energy preservation, detail extraction,
color fidelity, and so on) are enlarged as close-ups in each
image to make better comparisons.

Fig. 6 shows three sets of CT and MR image fusion
results. It can be seen that the SR-SOMP, GF, NSCT-PCDC,
and CTD-SR methods lose a large amount of energy,
leading to a significant decrease in the intensity and contrast
in many regions [see the bone regions in Fig. 6(a4)–(a6),
(a9), (b4)–(b6), (b9), (c4)–(c6), and (c9)]. The LP-SR and
LP-CNN methods perform better on this issue, but some
regions still tend to lose energy [see the second close-up
in Fig. 6(a8) and the bone regions in Fig. 6(b11) and (c11)].
The NSCT-SF-PCNN method can preserve the image energy,
but fails in extracting the structural details from the MR
image [see the first close-up in Fig. 6(a3), (b3), and (c3)].
The NSCT-RPCNN performs better than the NSCT-SF-PCNN
method, but some details are still not successfully extracted
[see the first close-up in Fig. 6(a7), (b7), and (c7)]. The fused
images of the LLF-IOI method suffers from serious noiselike
artifacts [see the soft-tissue regions in Fig. 6(a10), (b10), and
(c10)]. The proposed method performs well on both energy
preservation and detail extraction in all these three examples
[see Fig. 6(a12), (b12), and (c12)].

Fig. 7 shows three sets of MR-T1 and MR-T2 image
fusion results. The SR-SOMP, GF, NSCT-PCDC, and CTD-SR
methods still suffer from the undesirable effects caused by
loss of energy. In addition, some important information (e.g.,
edge) in the MR-T1 source image is not well preserved
in the fused images of these methods [see the second
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Fig. 6. Three sets of CT and MR image fusion results. Two close-ups are provided in each set for better comparison. The SR-SOMP, GF, NSCT-PCDC,
CTD-SR, LP-SR, and LP-CNN methods suffer from loss of energy to varying degrees. The NSCT-SF-PCNN and NSCT-RPCNN methods have some
defects in extracting anatomical details from the MR image. The LLF-IOI method introduces serious noiselike artifacts into the fused image. The proposed
method performs well on both energy preservation and detail extraction. Please refer to the main text for more detailed descriptions. (a1) CT. (a2) MR.
(a3) NSCT-SF-PCNN. (a4) SR-SOMP. (a5) GF. (a6) NSCT-PCDC. (a7) NSCT-RPCNN. (a8) LP-SR. (a9) CTD-SR. (a10) LLF-IOI. (a11) LP-CNN.
(a12) Proposed. (b1) CT. (b2) MR. (b3) NSCT-SF-PCNN. (b4) SR-SOMP. (b5) GF. (b6) NSCT-PCDC. (b7) NSCT-RPCNN. (b8) LP-SR. (b9) CTD-SR.
(b10) LLF-IOI. (b11) LP-CNN. (b12) Proposed. (c1) CT. (c2) MR. (c3) NSCT-SF-PCNN. (c4) SR-SOMP. (c5) GF. (c6) NSCT-PCDC. (c7) NSCT-RPCNN.
(c8) LP-SR. (c9) CTD-SR. (c10) LLF-IOI. (c11) LP-CNN. (c12) Proposed.

close-up in Fig. 7(b4)–(b6) and (b9)]. The main defect of the
NSCT-SF-PCNN and NSCT-RPCNN methods is their lower
ability in detail extraction. Many details are blurred or even
lost in the fused images of these two methods [see the
first close-up in Fig. 7(a3), (a7), (b3), and (b7)]. Noiselike
artifacts still exist in the fused images of the LLF-IOI method
[see Fig. 7(a10), (b10), and (c10)]. The LP-SR and LP-CNN

methods generally perform well, but intensity inconsistency
exists in some regions [see Fig. 7(c8) and (c11)]. The proposed
method obtains more competitive results [see Fig. 7(a12),
(b12), and (c12)] than the other methods.

Fig. 8 shows three sets of MR and PET image fusion results.
As structural details are mostly contained in the MR image,
almost all of these methods perform well in detail extraction
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Fig. 7. Three sets of MR-T1 and MR-T2 image fusion results. Two close-ups are provided in each set for better comparison. The SR-SOMP, GF,
NSCT-PCDC, and CTD-SR methods tend to lose energy and some important information in the MR-T1 source image are not well preserved. The NSCT-
SF-PCNN and NSCT-RPCNN methods do not extract sufficient details. The LLF-IOI method suffers from serious noiselike artifacts. The LP-SR and
LP-CNN methods introduce intensity inconsistency in some regions of the fused images. The proposed method obtains more competitive results than
other methods. Please refer to the main text for more detailed descriptions. (a1) MR-T1. (a2) MR-T2. (a3) NSCT-SF-PCNN. (a4) SR-SOMP. (a5) GF.
(a6) NSCT-PCDC. (a7) NSCT-RPCNN. (a8) LP-SR. (a9) CTD-SR. (a10) LLF-IOI. (a11) LP-CNN. (a12) Proposed. (b1) MR-T1. (b2) MR-T2. (b3) NSCT-
SF-PCNN. (b4) SR-SOMP. (b5) GF. (b6) NSCT-PCDC. (b7) NSCT-RPCNN. (b8) LP-SR. (b9) CTD-SR. (b10) LLF-IOI. (b11) LP-CNN. (b12) Proposed.
(c1) MR-T1. (c2) MR-T2. (c3) NSCT-SF-PCNN. (c4) SR-SOMP. (c5) GF. (c6) NSCT-PCDC. (c7) NSCT-RPCNN. (c8) LP-SR. (c9) CTD-SR. (c10) LLF-IOI.
(c11) LP-CNN. (c12) Proposed.

while the main difference lies in the color fidelity. It can be
clearly seen that the fusion results of the NSCT-SF-PCNN,
SR-SOMP, GF, and NSCT-PCDC methods suffer from severe
color distortion [see Fig. 8(a3)–(a6), (b3)–(b6), and (c3)–(c6)].
The LP-SR, CTD-SR, and LP-CNN perform better on this
issue, but color distortion still exists more or less in the
fused images of these three methods [see Fig. 8(a8), (a9),

(a11), (b9), (c8), and (c9)]. The LLF-IOI method tackles
the color information well, but the spatial information in the
MR source image is over enhanced such that the original
structural information is destroyed [see Fig. 8(a10), (b10),
and (c10)]. The NSCT-RPCNN and proposed methods can
achieve higher visual quality in terms of color preservation
than other methods, and our method performs better than the
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Fig. 8. Three sets of MR and PET image fusion results. Two close-ups are provided in each set for better comparison. The NSCT-SF-PCNN, SR-SOMP,
GF, NSCT-PCDC, LP-SR, CTD-SR, and LP-CNN methods suffer from color distortion at varying degrees. The LLF-IOI method over enhances the spatial
information in the MR source image, leading to the damage of original structural information. Both the NSCT-RPCNN and proposed methods perform well
in terms of color preservation, but the NSCT-RPCNN method tends to lose a few structural details. Please refer to the main text for more detailed descriptions.
(a1) MR. (a2) PET. (a3) NSCT-SF-PCNN. (a4) SR-SOMP. (a5) GF. (a6) NSCT-PCDC. (a7) NSCT-RPCNN. (a8) LP-SR. (a9) CTD-SR. (a10) LLF-IOI.
(a11) LP-CNN. (a12) Proposed. (b1) MR. (b2) PET. (b3) NSCT-SF-PCNN. (b4) SR-SOMP. (b5) GF. (b6) NSCT-PCDC. (b7) NSCT-RPCNN. (b8) LP-SR.
(b9) CTD-SR. (b10) LLF-IOI. (b11) LP-CNN. (b12) Proposed. (c1) MR. (c2) PET. (c3) NSCT-SF-PCNN. (c4) SR-SOMP. (c5) GF. (c6) NSCT-PCDC.
(c7) NSCT-RPCNN. (c8) LP-SR. (c9) CTD-SR. (c10) LLF-IOI. (c11) LP-CNN. (c12) Proposed.

NSCT-RPCNN method on detail extraction in some regions
[see the first close-up in Fig. 8(b7) and (b12)].

Fig. 9 shows three sets of MR and SPECT image fusion
results. The performances of the SR-SOMP, GF, NSCT-PCDC,
LP-SR, and CTD-SR methods on preserving color fidelity
are relatively low [see the serious visual inconsistency in the
white regions in Fig. 9(a4)–(a6), (a8), and (a9)]. The LLF-IOI

method over enhances the anatomical details in the MR
source images. As a consequence, some important functional
information contained in the SPECT source image is lost
[see Fig. 9(a10), (b10), and (c10)]. The NSCT-SF-PCNN
and NSCT-RPCNN generally perform well, but some defects
still exist in terms of the preserving functional information
from the SPECT source image [see the second close-up
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Fig. 9. Three sets of MR and SPECT image fusion results. Two close-ups are provided in each set for better comparison. The SR-SOMP, GF, NSCT-PCDC,
LP-SR, and CTD-SR methods are not effective in preserving color fidelity. The LLF-IOI method tends to lose some important functional information contained
in the SPECT source image as some structural details in the MR source images are over enhanced. The NSCT-SF-PCNN and NSCT-RPCNN generally
perform well, but some defects still exist in terms of the preserving functional information. The LP-CNN and proposed methods have the best performance
on color preservation, but some details are not well extracted by the LP-CNN method. Please refer to the main text for more detailed descriptions. (a1) MR.
(a2) SPECT. (a3) NSCT-SF-PCNN. (a4) SR-SOMP. (a5) GF. (a6) NSCT-PCDC. (a7) NSCT-RPCNN. (a8) LP-SR. (a9) CTD-SR. (a10) LLF-IOI. (a11) LP-CNN.
(a12) Proposed. (b1) MR. (b2) SPECT. (b3) NSCT-SF-PCNN. (b4) SR-SOMP. (b5) GF. (b6) NSCT-PCDC. (b7) NSCT-RPCNN. (b8) LP-SR. (b9) CTD-SR.
(b10) LLF-IOI. (b11) LP-CNN. (b12) Proposed. (c1) MR. (c2) SPECT. (c3) NSCT-SF-PCNN. (c4) SR-SOMP. (c5) GF. (c6) NSCT-PCDC. (c7) NSCT-RPCNN.
(c8) LP-SR. (c9) CTD-SR. (c10) LLF-IOI. (c11) LP-CNN. (c12) Proposed.

in Fig. 9(a2), (a3), (a7), and (a12)]. The LP-CNN method
and the proposed method have the best performance on color
preservation, but some structural details are blanketed by the
functional information in the fusion results of the LP-CNN
method [see the second close-up in Fig. 9(b11)].

2) Objective Assessment: Table II lists the objective assess-
ment of different fusion methods on four categories of medical

image fusion problems. The average score of each method over
all the testing images in each fusion problem is reported. For
each metric, the highest value shown in bold indicates the
best score among all the 10 methods, and we also underline
the scores at the second place and the third place. For each of
the scores at the first three places, a digit within a parenthesis
is given to indicate its rank. To have a more intuitive grasp
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Fig. 10. Objective assessment of different image fusion methods. Among all the 10 methods, the proposed method is the only one that always ranks at the
first three places for all the five metrics and all the four types of fusion problems.

about the objective performances of different fusion methods,
the contents given in Table II are visualized in Fig. 10.

Overall, among all the 10 methods, our method is the
only one that always ranks at the first three places for all
the five metrics and all the four types of fusion problems,
which reflects the high robustness of the proposed method.
In particular, our method wins the first place on the metric
VIFF for all the four problems.

In comparison to the NSCT-SF-PCNN and NSCT-RPCNN
methods, it can be seen from Table II and Fig. 10 that
the proposed method outperforms those two methods on
almost all the metrics over all the four image fusion
problems, which indicates the clear advantages of our
method.

We can see from Table II and Fig. 10 that the LLF-IOI
and LP-CNN methods also have high objective performances.
The LLF-IOI always obtains the highest scores on metric
SD, but this is just in accord with its noiselike visual
perception mentioned earlier. Our method owns obvious
advantages over the LLF-IOI method on metrics LMI, QW ,
and VIFF. The LP-CNN method obtains higher scores on
metric LMI in the last two types of fusion problems, but
is beaten by the proposed method in most of the other
cases.

3) Computational Efficiency: In this section, the computa-
tional costs of different fusion methods are compared. Without
loss of generality, this part of experiment is conducted on
the set of CT and MR source images while the results on

other three image sets are very similar.4 Specifically, for each
method, we first measure the total running time on fusing all
the 10 pairs of source images, and then divide it by 10 to
obtain the mean value T indicating the average running time
to fuse one pair of source images. The above-mentioned steps
are repeated eight times to calculate the statistical average
value and SD (unbiased) of T . The results of different fusion
methods are listed in Table III. It can be seen that the
computational efficiency of the proposed method is just lower
than the LP-SR and GF methods, while higher than the other
seven methods. In particular, the proposed method is more
efficient than the other two PCNN-based methods, which is
mainly owing to the fewer PCNN iterations required.5 With a
more efficient programming language such as C++, it can be
predicted that the computational efficiency of our method is
able to satisfy the demand of practical applications.

D. Further Discussion

Considering the above-mentioned comparisons comprehen-
sively, it can be concluded that the proposed method can

4All the source images are of the same size and conversion between the
RGB and YUV color spaces are very efficient. More importantly, as the results
are relevant to the hardware/software platforms, the relative differences among
different methods are of more significance than the absolute values.

5The efficiency of the NSCT-SF-PCNN method is lower than that of the
NSCT-RPCNN method and our method to a considerable extent, which is
mainly because the directional filters used in [21] have much larger spatial
sizes. In this paper, for the sake of fair comparison, all the parameters
in the compared methods are set to their default values used in the original
implementations.
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TABLE II

OBJECTIVE ASSESSMENT OF DIFFERENT METHODS ON FOUR CATEGORIES OF MEDICAL IMAGE FUSION PROBLEMS

TABLE III

RUNNING TIME OF DIFFERENT METHODS WHEN FUSING TWO SOURCE IMAGES OF SIZE 256 × 256 PIXELS (UNIT: SECONDS)

Fig. 11. CT and MR image fusion examples in our experiments. The clinical information in this case is of a 63-year-old male getting acute stroke. The proposed
method performs better than most of the other methods in the abnormal region (right close-up) when referring to the MR source image. However, the fusion
quality of the bone regions (an example is given by the left close-up) from the CT image is not satisfactory in almost all the fusion results except for the one
achieved by the LLF-IOI method. (a) CT. (b) MR. (c) NSCT-SF-PCNN. (d) SR-SOMP. (e) GF. (f) NSCT-PCDC. (g) NSCT-RPCNN. (h) LP-SR. (i) CTD-SR.
(j) LLF-IOI. (k) LP-CNN. (l) Proposed.

obtain very competitive performance among those state-of-
the-art fusion methods. In spite of this, there still exist some
defects that are worth further studying. Fig. 11 shows a CT
and MR image fusion example in which our method does

not perform very well in some regions. In this example,
the CT image mainly provides accurate location of the bones,
as illustrated by the first close-up. The MR image captures the
information of brain tissues and the second close-up focuses
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on an abnormal region (the clinical information in this case
is of a 63-year-old male getting acute stroke). It can be
seen that our method outperforms most of the other methods
(e.g., NSCT-SF-PCNN, SR-SOMP, NSCT-RPCNN, CTD-SR,
and LLF-IOI) in the abnormal region when referring to the
MR source image. Another noticeable issue in this example
is that the fusion quality of bone regions from the CT image
is not satisfactory in almost all the results except for the one
achieved by the LLF-IOI method. This is mainly because there
are no salient details in the bone regions, while most image
fusion methods including the proposed one concentrate on the
extraction of structural details. As a result, the meaningless
details in the same regions of the MR image are introduced
into the fused image more or less, leading to undesirable visual
artifacts. To overcome this defect, in our opinion, some prior
information of the source images maybe helpful to design
more effective fusion strategies for further improvement.

VI. CONCLUSION

In this paper, a new medical image fusion method in the
NSST domain is presented. The main novelty of the proposed
method is twofold. For one thing, we introduce a PA-PCNN
model into the fusion of high-frequency coefficients. All
the free parameters in the PCNN model can be adaptively
calculated according to the input band and the model has
a fast convergence speed. For another, we propose a low-
frequency fusion strategy that simultaneously addresses two
crucial issues in medical image fusion, namely, energy preser-
vation and detail extraction. Two new activity level measures
based on local energy and ML are designed to achieve this
goal. Extensive experiments are conducted using 83 pairs of
source images over four categories of medical image fusion
problems to verify the effectiveness of the proposed method.
Nine representative fusion methods are used for comparison
and the results demonstrate that the proposed method can
achieve state-of-the-art performance in terms of both the visual
perception and objective assessment. In the future, we will
devote to develop more effective fusion strategies such as
region-adaptive-based ones to further improve the algorithm
performance. Another goal is to promote the practical value
of the image fusion method in clinical applications by simul-
taneously considering some related critical issues such as
data preprocessing and image registration for multimodality
medial images. Moreover, we will also explore the potential
of the PA-PCNN model for other image fusion issues such
as multifocus image fusion, infrared and visible image fusion,
and so on.
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