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Abstract

Feature selection presents many challenges and difficulties during online learning. In this study, we focus on fuzzy feature 
selection for fuzzy data stream. We present a novel incremental feature weighting method with two main phases comprising offline 
fuzzy feature selection and online fuzzy feature selection. A sliding window is used to divide the fuzzy data set. Each fuzzy input 
feature is assigned a weight from [0, 1] according to the mutual information shared between the input features and the output 
feature. These weights are employed to access the candidate fuzzy feature subsets in the current window and based on these 
subsets, the offline fuzzy features selection algorithm is applied to obtain the fuzzy feature subsets by combining the backward 
feature selection method with the fuzzy feature selection index in the first sliding window. The online feature selection algorithm is 
performed in each of the new sliding windows. The feature subset in the current window is updated by combining the fuzzy feature 
selection results from the previous sliding window with the current candidate fuzzy feature set according to the importance level 
of the fuzzy input feature. Finally, the evolving relationships of the fuzzy input features are found using the fuzzy feature weight 
between the sliding windows. Simulation results showed that the proposed algorithm obtains significantly improved adaptability 
and prediction accuracy compared with existing algorithms.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The online monitoring of high-dimensional dynamical data has become increasingly important for observing sys-
tems in a wide range of advanced applications, such as telephone records, large sets of web pages, multimedia data, 
and sets of retail chain transactions [1]. Due to the complexity of dynamical systems, incremental learning is essential 
for knowledge discovery, which is an important aspect of human intelligence. Many applications need to process data 
in a sequence, which has led to the generation of a wide range of incremental learning methods [2], [3]. In particular, 
two types of situations must be addressed. In the first situation, the data set cannot be collected in one pass and batch 
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computing cannot be conducted, e.g., online applications [4] or interaction queries [5]. In the second situation, the 
data set is excessively large and it cannot be calculated in one pass due to limitations in terms of the computation 
capability and the memory size. Thus, the data set must be divided into segments and added successively. The rela-
tionships between the newly data added and the stored data structure must then be analyzed in order to acquire new 
knowledge. It is difficult to apply an incremental feature selection process to compensate for different operational 
modes because the importance level of features can change dynamically during the overall learning process. For ex-
ample, specific features may be much more important initially than later in the process. Therefore, many incremental 
feature selection algorithms have been proposed for synchronously updating the classifiers [6–8,10]. In [6], the incre-
mentally selected features for representing the information in the overall data set are evaluated using classifiers, which 
increases the computational cost of the feature selection process. In [7], a wrapper feature selection algorithm with an 
incremental Bayesian classifier (WFSIBC) was proposed where a greedy algorithm is used to find the optimal feature 
subset, which increases the time complexity and space complexity. The incremental feature neighborhood rough set 
(IFNRS) algorithm was presented by [8] to select the features incrementally but without considering constraints on 
discrete data. An incremental feature selection algorithm based on information granularity was proposed by [9] where 
the non-matrix structure improves the efficiency of the algorithm. Other incremental feature selection algorithms such 
as those presented by [10–13] can be employed for regression prediction. In the method described by [10], the useful 
features are selected incrementally by combining clustering algorithms with four new feature quality indices but the 
number of clusters needs to be predefined. A genetic algorithm and the K-means algorithm are used to determine the 
objective function and the optimal range, respectively, in the method proposed by [11] but the features subset is not 
globally optimal. An online unsupervised multi-view feature selection (OMVFS) algorithm was presented by [12], 
where feature selection is embedded directly in a clustering algorithm that retains the local information structure, but 
the parameters need to be set for the clustering algorithm, which leads to poor adaptability. The feature selection based 
on data streams (FSDS) algorithm was proposed by [13] for determining the importance level of features according to 
the regression results based on approximate data, but it has no independent evaluation index and it is mainly employed 
for updating the regression model.

It is difficult to apply an incremental feature selection process to a fuzzy feature space with fuzzy linguistic terms 
in order to improve the interpretability of the system. A significant problem when learning fuzzy features from data 
is the so-called curse of dimensionality, where the fuzzy feature space has higher dimensionality than the original 
feature space, which increases the complexity of the system. This problem was addressed by [14] where the fuzzy 
features were selected by evaluating the importance level of each fuzzy feature according to the minimum–maximum 
learning rule and the extended matrix built based on the fuzzy data, but this algorithm is unsuitable for dynamic 
systems. A local fuzzy feature selection strategy based on switching to a neighboring model was proposed by [15]
for capturing the local dynamics, but is not possible to inactivate and reactivate the input variables in different stages. 
An online incremental feature weighting method was presented by [16] for updating the classifiers according to a 
separability criterion, where the weight was calculated for each feature and compared with all of the features. The 
most important feature received a weight of 1 and the others were weighted between 0 and 1. The weights of all the 
features were then used directly in the model for updating and inference, but this method may lead automatically 
to the curse of dimension reduction during rule evolution. Soft feature selection using a feature weighting method 
was presented by [17] based on a classifier, where the Fisher separability criterion was applied in the feature space 
to select suitable features, although it was more convenient to apply in the empirical feature space. An adaptive 
incremental fuzzy feature selection method using a neo-fuzzy neural network was presented by [18], which selects 
the model input and updates the network weight simultaneously, although this method leads to redundant features 
because the dependencies between the features are not analyzed. As described above, the inclusion of feature weights 
discriminates features that are more important and less important, thereby providing additional information to users 
and experts by giving insights into the feature selection process and its interpretability. However, in order to implement 
feature selection, these algorithms depend on a classifier or regression model, which increases the complexity of the 
model selection procedure.

2. Proposed approach

In this study, we propose an incremental feature weighting for fuzzy feature selection (IWFFS) algorithm with two 
main phases: offline fuzzy feature selection and online fuzzy feature selection. First, the fuzzy data are partitioned 



JID:FSS AID:7524 /FLA [m3SC+; v1.290; Prn:23/11/2018; 15:42] P.3 (1-19)

L. Wang et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 3
by sliding windows. In the first sliding window, the offline fuzzy feature selection algorithm is applied, where the 
weight of each fuzzy input feature is calculated according to the mutual information between the fuzzy input features 
and the output feature, and they are then sorted in descending order according to their weights. In order to identify 
the differences between the fuzzy features according to their weights, the gradients of the weights of the adjacent 
fuzzy input features are calculated to find the optimal single fuzzy input feature to obtain the candidate fuzzy features 
subset, which narrows the search space. However, feature selection requires maintaining the whole optimal input 
feature subset. Thus, the fuzzy input feature selection index (FCI) is viewed as a measurement criterion for selecting 
incremental fuzzy features subsets, where it considers the mutual information shared between the input feature and 
output feature, as well as the mutual information between fuzzy input features. Next, online fuzzy feature selection 
is applied in each of the sliding windows. In order to adaptively track the changes in the fuzzy feature weights and 
obtain the optimal fuzzy features subset for the current sliding window, the candidate fuzzy features subset in the 
current sliding window and the optimal fuzzy features subset in the previous sliding window are used simultaneously 
to increase the interpretability of the model and to ensure the smoothness of the learning process. Regardless of 
whether the fuzzy data are categorical data or continuous data, our approach can obtain the optimal fuzzy features 
subset without using a classifier or regression model, or by predefining any parameter, which improves the adaptability 
of the algorithm.

3. Incremental feature weighting

3.1. Basic concept

The incremental feature weighting concept is an attempt to reduce the curse of dimensionality. This method 
is generally used for incremental feature selection by assigning continuous weights in the range of [0, 1], which 
can be treated as the importance levels of the features in dynamic systems, instead of using crisp weights from 
{0, 1}. When the feature weights approach 0, their importance level is relatively low compared with others that 
have values near 1. The main advantage of feature weighting compared with feature selection is clear when ap-
plied in an incremental learning scenario. Incremental feature selection abruptly changes the weights from 0 to 
1 or vice versa to follow the importance level of the features in a smooth and continuous manner. In the con-
text of incremental feature selection, the feature weights must also be permanently and synchronously updated in 
order to select the most appropriate features with the minimum redundancy among the input features and the max-
imum dependency on the output feature. Before calculating the feature weights, we first fuzzify the original data, 
as explained in Section 3.2. In Section 3.3, we describe the detection of the distribution of the data by using the 
Hoeffding boundary to adaptively determine the sliding windows and to partition the fuzzy data. Finally, in Sec-
tions 3.4 and 3.5, we define the fuzzy information entropy and provide a method for calculating the fuzzy feature 
weights.

3.2. Fuzzification

The fuzzy approach is very simple and similar to the way humans think, so it is exploited widely in intelligent 
systems [14]. In addition, the fuzzy approach is helpful for abstracting at a high level rather than applying a simple hard 
division of the data. In general, it is necessary to establish a membership function based on experience or knowledge to 
achieve fuzzification. However, the available information and expert knowledge are difficult to obtain in many cases. 
In our method, the samples for each feature are clustered [19] to obtain the fuzzy data. We assume that the data set 
Dp in the pth (p ≥ 0) sliding window contains n samples, L input features, and one output feature, which can be 
represented as follows.

Dp =

⎡
⎢⎢⎢⎢⎣

x11
p · · · x1L

p y1
p

x12
p · · · x2L

p y2
p

...
...

...
...

x1n · · · xnL yn

⎤
⎥⎥⎥⎥⎦ (1)
p p p
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The input features vector is denoted as �Xp = [X1
p, X2

p, · · · , Xj
p, · · · , XL

p ]. The output feature vector is denoted as 

YP = [y1
p, y2

p, · · · , yj
p, · · ·yn

p]. We assume that the input feature Xj
p is discretized after clustering [19] to form 

∣∣Cj
p

∣∣
partitions, which can be fuzzified as a fuzzy features vector:
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where X̃jq
p is the qth (1 ≤ q ≤ ∣∣Cj

p

∣∣) fuzzy feature of the j th (1 ≤ j ≤ L) feature in the pth sliding window, which 

can also be represented as the fuzzy equivalence class generated by X̃jq
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X̃
jq
p =

μ
X̃

jq
p

(x
1j
p )

x
1j
p

+
μ

X̃
jq
p

(x
2j
p )

x
2j
p

+ · · · +
μ

X̃
jq
p

(x
ij
p )

x
ij
p

+ · · · +
μ

X̃
jq
p

(x
nj
p )

x
nj
p

, (3)

where 
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p )
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ij
p

is a fuzzy partition of xij
p induced by fuzzy membership function μ
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2 ), 1 ≤ i ≤ n, 1 ≤ j ≤ L, 1 ≤ q ≤ ∣∣Cj
p

∣∣, (4)

where n is the number of samples, L is the number of input features, xij
p is the value of the j th input feature of the ith 

sample in the pth sliding window, and x̄j
p and (σ j

p )2 are the mean and variance of the samples of the j th input feature 
in the pth sliding window, respectively.

3.3. Sliding window

Sliding windows are applied widely in dynamic conditions. Each sliding window reads the new data and discards 
the previous data. Based on the sliding window technique, we can test the latest data points in the current window to 
determine whether the characteristics of the data are similar to those in the last window or not. There are two main 
methods for applying sliding windows: using a fixed window size [20] or employing a decay factor to determine 
the abandoned data and retained data [21]. However, the sensitive parameters need to be predefined, where they can 
be determined according to the data distribution. For example, the Hoeffding bound [22] adjusts the window size 
according to the real data distribution and the range of features. During the incremental feature selection process, the 
aim of the sliding window is to detect the changes in features. The selected features in the adjacent sliding window 
are used to analyze the evolution of the weights for each input feature. Let ε be the Hoeffding bound. Suppose that 
we have n samples and the difference is 1 − δ (δ is generally set to 0.05). For the feature with range R, the difference 
between the estimated mean value and the actual mean value does not exceed ε, which is computed as follows

ε =
√

R · RT ln(1/δ)

2n
(5)

The Hoeffding bound becomes smaller as the value of n increases, so the Hoeffding bound ε will approach 0 if n
is sufficiently large. Thus, the estimated mean will fully approximate the true mean of the original samples.

The minimum window size NH [23] can be obtained from the Hoeffding bound by:

NH = R2 ln(1/δ)

2ε2 . (6)

In order to obtain ε, we assume that Wp−1 and Wp are two sliding windows, and μp−1 and μp are their means with 
probability 1 − δ, respectively. If 

∣∣μp−1 − μp

∣∣ ≤ 2ε, then from Eq. (5) and Eq. (6), we have the following.

NH = 2R2 ln(1/δ)

(μp−1 − μp)2 (7)
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3.4. Fuzzy information entropy

The fuzzy information entropy [24] can be used as measure of the discernibility of a fuzzy feature. When the 
entropy value is greater, the discernibility is stronger and the fuzzy feature is more significant. When a novel fuzzy 
feature is added to the information system, the entropy value increases monotonously, which reflects how the newly 
added feature enhances the discernibility. Let f s

p be the subset of fuzzy features in the pth sliding window. The fuzzy 
equivalence class generated by Di

p and f s
p is represented as [Di

p]
f s

p
:
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, (8)
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p
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where |f s
p | is the number of fuzzy features contained in f s

p , X̃jq
p is the qth fuzzy feature of the j th feature in the 

pth sliding window, μ
X̃

jq
p
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p ) is the membership value of the j th feature value of the ith sample in the pth sliding 

window corresponding to the fuzzy feature X̃jq
p , μ
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p ) is the membership value of the j th feature value of the 

kth sample in the pth sliding window corresponding to the fuzzy feature X̃jq
p , and Bi
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is the cardinality of subset f s
p

corresponding to the ith sample:
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The fuzzy information entropy of f s
p is defined as follows.

H(f s
p) = −1

n

n∑
i=1

log
Bi

f s
p

n
(11)

The joint fuzzy information entropy [24] is also defined to measure the discernibility of a relation between the fuzzy 
features subset and fuzzy feature. When the entropy value is greater, the discernibility is stronger and the fuzzy feature 
is more closely linked to the fuzzy features subset. We assume that f s

p is the subset of fuzzy features in the pth sliding 

window and X̃jq
p is the qth fuzzy feature of the j th feature in the pth sliding window. [Di
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where s(Dk
p,Di

p)
X̃
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p

is the relation value of Dk
p and Di

p generated by X̃jq
p , as follows.
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The joint fuzzy information entropy between f s
p and X̃jq

p is computed by:

H(X̃
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p , f s

p) = −1

n

n∑
i=1

log

∣∣∣[Di
p]

f s
p

∩ [Di
p]

X̃
jq
p

∣∣∣
n

, (X̃
jq
p /∈ f s

p). (14)



JID:FSS AID:7524 /FLA [m3SC+; v1.290; Prn:23/11/2018; 15:42] P.6 (1-19)

6 L. Wang et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
3.5. Fuzzy feature weight

A fuzzy feature weight is a continuous index in the range of [0, 1], which is used to measure the importance level of 
a fuzzy feature. A feature has a high importance level when its weight approaches 1 and a low importance level when 
its weight approaches 0. The fuzzy feature weight has is characterized by softness and smoothness. Softness means 
that features can be down-weighted instead of being discarded completely. The features with low weights still contain 
some information. Smoothness means that the fuzzy feature weight will change constantly, so a fuzzy feature with 
a low weight may become an important feature with a high weight in the subsequent learning process. The weight 
w(X̃

jq
p ) of each fuzzy feature is calculated according to the mutual information:

w(X̃
jq
p ) = I (X̃

jq
p ,Yp)

L∑
j=1

∣∣Cj
p

∣∣∑
q=1

I (X̃
jq
p ,Yp)

, (15)

where X̃jq
p is the qth fuzzy feature of the j th feature in the pth sliding window, Yp is the output feature in the pth 

slide window, and I (X̃
jq
p , Yp) is the mutual information between the input feature X̃jq

p and the output feature Yp in 
the pth sliding window:

I (X̃
jq
p ,Yp) = H(X̃

jq
p ) + H(Yp) − H(X̃

jq
p ,Yp), (16)

where H(X̃
jq
p ), H(Yp) and H(X̃

jq
p , Yp) are calculated according to Eq. (11) and Eq. (14), respectively.

In particular, when Yp is a class label, the entropy H(Yp) of Yp is calculated by:

H(Yp) = −
∣∣CY

p

∣∣∑
l=1

nl

n
log(

nl

n
), (17)

where 
∣∣CY

p

∣∣ is the number of class labels and nl is the number of samples with class label l.

The joint information entropy between X̃jq
p and Yp is calculated as follows.

H(X̃
jq
p ,Yp) = −

∣∣CY
p

∣∣∑
l=1

1

nl

nl∑
i=1

log
Bi

X̃
jq
p

nl

(18)

However, if only the fuzzy feature weights are considered, the differences between fuzzy features might not be 
recognized when the weights between the fuzzy feature are very similar. Thus, we employ the fuzzy weight gradient 
to select the fuzzy features in order to avoid this problem. The fuzzy features are sorted according to the descending 
order of their weights and the gradient �d

p of the adjacent fuzzy weights in the pth sliding window is calculated by:

�d
p = |wd

p − wd+1
p |, 1 ≤ d ≤ m − 1 (19)

m =
∣∣∣C1

p

∣∣∣ + · · · +
∣∣∣Cj

p

∣∣∣ + · · · +
∣∣∣CL

p

∣∣∣ , (20)

where wd+1
p and wd

p are the weights of the (d + 1)th and the d th fuzzy input features sorted in order in the pth sliding 
window, respectively.

If the adjacent fuzzy weight gradients vary in a certain range, then the effect of the fuzzy input feature on the output 
feature remains at an almost steady level. If the adjacent weight gradients decrease greatly, then the effect of the fuzzy 
input feature on the output feature shrinks. In order to adaptively identify the cut-off point where the effect of the 
fuzzy input feature on output feature shrinks rapidly, the cut-off threshold is calculated for the d th weight gradient in 
the pth sliding window by using Eq. (23) according to the first d − 1 weight gradients in the pth sliding window:
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ρd
p =

d−1∑
d1=1

�d1
p

d − 1
+

√√√√√√√ d−1∑
d1=1

(�d1
p −

d−1∑
d2=1

�d2
p

d − 1
)

2

, d ≥ 3. (21)

When �d
p > ρd

p , the (d + 1)th feature is the cut-off point after sorting in descending order.

3.6. Fuzzy input feature selection index

Regardless of whether the fuzzy feature weight or the gradient of the adjacent fuzzy feature weight is employed, 
they can only measure the quality of a single fuzzy feature. However, the aim of feature selection is to maintain the 
whole optimal input feature subset. Thus, FCI is employed as a measurement criterion for incremental fuzzy feature 
selection, where it considers the mutual information shared between the input feature and the output feature, as well 
as the mutual information between the fuzzy input features:

FCI (f s
p) = |f s

p |CF̄p√
|f s

p | + |f s
p |(|f s

p | − 1)F F̄p

, (22)

where |f s
p | is the number of fuzzy features contained by f s

p in the pth sliding window, and CF̄p is the mean value of 
the mutual information shared between the fuzzy input features and output feature in the pth sliding window:

CF̄p =

L∑
j=1

∣∣Cj
p

∣∣∑
q=1

I (X̃
jq
p ,Yp)

∣∣f s
p

∣∣ , (X̃
jq
p ∈ f s

p). (23)

FF̄p is the mean value of the mutual information shared between the two fuzzy input features contained by f s
p in the 

pth sliding window:

FF̄p =

L∑
j,u=1,j �=u

∣∣Cj,u
p

∣∣∑
q,v=1,q �=v

I (X̃
jq
p , X̃uv

p )

∣∣f s
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∣∣(∣∣f s
p

∣∣ − 1)
, (X̃

jq
p , X̃uv

p ∈ f s
p). (24)

The mutual information I (X̃
jq
p , X̃uv

p ) shared between the fuzzy feature X̃jq
p and the fuzzy feature X̃uv

p in the pth 
sliding window is calculated by:

I (X̃
jq
p , X̃uv

p ) = H(X̃
jq
p ) + H(X̃uv

p ) − H(X̃
jq
p , X̃uv

p ), (25)

where H(X̃
jq
p ) and H(X̃uv

p ) are the entropies of the fuzzy input feature X̃jq
p and X̃uv

p in the pth sliding window, 

respectively, and H(X̃
jq
p , X̃uv

p ) is the joint information entropy between X̃jq
p and X̃uv

p .

4. IWFFS

4.1. IWFFS framework

To enhance the effectiveness of incremental fuzzy feature selection, reduce the complexity, and identify the evolv-
ing relationships for each fuzzy input feature, the proposed framework for the IWFFS is shown in Fig. 1. First, the 
fuzzy data are partitioned using sliding windows, where offline fuzzy feature selection is used in the first sliding win-
dow and online fuzzy feature selection is applied in each of the sliding windows successively. During the offline fuzzy 
feature selection process, the weight of each fuzzy input feature is calculated based on the mutual information entropy 
between the input and output features, and the fuzzy features subset is then obtained according to their weights. The 
backward feature selection [25] and fuzzy input features selection indices are used to obtain the candidate fuzzy fea-
tures subset, where backward feature selection indicates that the procedure starts with the full set of fuzzy features. 
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Fig. 1. Framework of the IWFFS.

In each step, the worst attribute remaining in the set is removed. The fuzzy feature with the lowest weight is then 
ignored to obtain the optimal fuzzy features subset. During the online fuzzy feature selection process, the candidate 
fuzzy features subset is obtained using the data in the current sliding window. The intersection of the optimal fuzzy 
features subset from the previous sliding window and the candidate fuzzy features subset in the current sliding window 
is treated as the initial optimal fuzzy features subset. The importance level is calculated between the initial optimal 
fuzzy features subset and the other input fuzzy features, and if the importance level is above 0, the input fuzzy feature 
is added to the optimal features subset. Finally, the evolving relationships among the input fuzzy features are analyzed 
according to their weights.

4.2. Offline fuzzy feature selection

The offline fuzzy features selection algorithm is summarized in Fig. 2. This algorithm is applied in the first sliding 
window and it comprises two main parts. In the first part, the weights of the fuzzy input features are calculated 
according to the mutual information shared between the fuzzy input features and the output feature, and the fuzzy 
features are then sorted in descending order of their weights to generate the candidate fuzzy features subset. In the 
second part, the fuzzy feature selection index is employed to select the fuzzy features, where the mutual information 
shared between the input features as well as the mutual information shared between the input and output features 
are all considered to obtain the global optimum fuzzy features subset according to the backward feature selection 
algorithm.

4.3. Online fuzzy feature selection algorithm

The online fuzzy feature selection algorithm is summarized in Fig. 3, which is applied in the subsequent sliding 
windows. First, the candidate fuzzy features set is generated using the data in the current sliding window according to 
the adjacent gradients of the weights. Next, the initial optimal fuzzy features subset in the current window is obtained 
according to the intersection between the optimal fuzzy features subset f s in the (p − 1)th sliding window and the 
p−1
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Fig. 2. Extraction of the offline fuzzy feature selections.

candidate fuzzy features set in the current sliding window. Finally, the optimal fuzzy features subset in the pth sliding 
window is obtained according to the importance levels of the features.

4.4. Computational complexity of the IWFFS algorithm

The time complexity of the IWFFS depends on the number of fuzzy features. We assume that m is the number 
of original fuzzy features. The IWFFS algorithm has two main phases comprising offline fuzzy feature selection and 
online fuzzy feature selection. For the offline fuzzy features selection algorithm, the cost of computing the mutual 
information is O(m) and the complexity of calculating the weights of the fuzzy features based on their mutual in-
formation is O(m). The fuzzy features are then sorted in descending order of their weights to calculate the gradients 
of the adjacent fuzzy weights �d

p(d ≥ 3). If �d
p is higher than the cut-off threshold, then the d features sorted in 

descending order of their weights are treated as the candidate fuzzy features subset f cs
p . In the worst case, the time 

complexity required is O(m). In the best case, the time complexity required is O(3), and thus the candidate fuzzy 
features subset f cs

p is not updated until the fuzzy features selection index FCI (f cs
p ) does not increase. The worst 

case complexity for updating is O(m − 3). The total time complexity of the offline fuzzy features selection algorithm 
is O(m + m + m + m), which is simplified as O(m).
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Fig. 3. Extraction of the online fuzzy feature selections.

For the online fuzzy feature selection algorithm, the complexity is similar to that of the offline fuzzy feature 
selection for obtaining the candidate fuzzy feature subsets in the current window. The worst-case complexity is 
O(m + m + m + m), where the optimal fuzzy feature subsets are obtained by calculating the importance levels of 
the fuzzy features retained in the candidate fuzzy feature subsets until the importance level is greater than 0. In the 
worst case, the time complexity for calculating the importance level is O(m − 3). The total time complexity of the 
online fuzzy feature selection is O(m + m + m + m), the which is simplified as O(m).

5. Experimental results and analysis

5.1. Experimental setup

Several experiments were conducted to test the proposed dynamic fuzzy features selection method. All of the 
data sets were downloaded from the UCI Machine Learning Repository [26]. The statistics for the data sets used in 
our experiments are shown in Table 1, which we employed to conduct all of our experiments and analysis. Table 1
shows that some of the data sets had continuous features but the classes were discrete, such as the classification data 
sets comprising SD, BCH, Glass, Liver, Wine, Yeast, SEA, Weather, and svmguide3. Others had continuous output 
features, such as the regression data sets comprising Airfoil Self-Noise, Concrete_Data, Energy efficiency, Red wine 
quality, White wine quality, Beijing PM2.5 data, and PPPTS. The sizes of the data sets varied from 214 to 50000 
instances and the total number of original features in the data sets ranged up to 21.
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Table 1
Descriptions of the data sets.

Data set #No. of patterns Dimensionality

SD 2000 2
BCH 1372 4
Glass 214 9
Liver 341 6
Wine 178 13
Yeast 1484 8
SEA 50000 3
Weather 18159 8
Symguide3 1243 21
Airfoil Self-Noise 1503 5
Concrete_Data 1030 8
Energy efficiency 768 8
Red wine quality 1599 11
White wine quality 4898 11
Beijing PM2.5 data 43800 6
PPPTS 45730 9

The performance of a classifier based on the feature selection results was measured using the classification accuracy 
(ACC) [27]:

ACC =

|C|∑
k=1

ak

n
, (26)

where ak is the number of patterns with correct classification results corresponding to the correct class labels.
The performance of a regression model based on the feature selection results was measured using the mean absolute 

percentage error (MAPE) [28]:

MAPE = 1

n

n∑
i=1

|ŷi − yi |
yi

, (27)

where yi is the target value for the ith sample and ŷi is the predicted value for the ith sample.
All of the experimental results were based on the averages over 20 runs. The hold-out test employed in this study 

was only used to estimate the performance based on the last sliding window, which is more appropriate for the concept 
drift situation under consideration and more efficient for computing the estimate.

5.2. Effects of the sliding window size

In order to evaluate the effects of different sliding window sizes on the IWFFS, the data sets were partitioned 
to form various sliding window, where 70 percent of the data were randomly selected for model training and the 
other 30 percent of the data were employed for testing the classification and prediction performance of the model. 
The classification based on multiple association rules (CMAR) [29] classifier and C4.5 classifier [23] were used to 
evaluate the classification performance based on the fuzzy features set. For CMAR, the support and confidence were 
set as 10% and 70%, respectively. A backpropagation (BP) neural network [30] and support vector regression (SVR) 
[31] were employed to evaluate the prediction performance based on the fuzzy features set. The hidden layer of the 
BP network had 10 nodes. The kernel function used for SVR was the radial basis function, where ε was 0.05 and C
was 10. To ensure fair comparisons, all of the algorithms used the same experimental settings. In addition, all of the 
experiments were conducted over 20 times, where each used a random permutation of the data set.

As shown in Tables 2 and 3, the classification and prediction performance of the IWFFS method were better than 
that with a predefined window size because our proposed method can adaptively determine the window size according 
to the Hoeffding boundary, which improved the classification and regression prediction performance using the fuzzy 
data.
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Table 2
Cumulative classification accuracy (ACC) with the 95% confidence interval for CMAR/C4.5 based on different window sizes.

Data set Window size

5% 10%
(Percentage of 
data in the window)

(Percentage of 
data in the window)

Proposed 
method

SD 0.875±0.005/0.881±0.005 0.864±0.007/0.875±0.007 0.906±0.005/0.912±0.005
BCH 0.883±0.022/0.896±0.022 0.874±0.027/0.896±0.027 0.947±0.030/0.958±0.030
Glass 0.904±0.007/0.912±0.007 0.891±0.013/0.901±0.013 0.962±0.020/0.967±0.022
Liver 0.892±0.009/0.881±0.009 0.874±0.012/0.869±0.012 0.952±0.015/0.948±0.015
Wine 0.903±0.004/0.921±0.004 0.886±0.006/0.897±0.009 0.957±0.008/0.969±0.008
Yeast 0.911±0.011/0.916±0.012 0.895±0.014/0.903±0.015 0.960±0.015/0.974±0.015
SEA 0.921±0.021/0.934±0.018 0.904±0.018/0.912±0.019 0.983±0.022/0.989±0.023
Weather 0.878±0.036/0.896±0.039 0.858±0.035/0.869±0.036 0.948±0.036/0.957±0.036
svmguide3 0.918±0.033/0.926±0.034 0.920±0.034/0.917±0.036 0.934±0.033/0.941±0.033

Table 3
Cumulative prediction accuracy (MAPE) with the 95% confidence interval for BP/SVR based on different window sizes.

Data set Window size

5% 10%
(Percentage of 
data in the window)

(Percentage of 
data in the window)

Proposed 
method

Airfoil Self-Noise 0.190±0.030/0.185±0.042 0.185±0.031/0.176±0.032 0.141±0.033/0.042±0.033
Concrete_Data 0.149±0.149/0.133±0.023 0.147±0.025/0.131±0.020 0.116±0.022/0.033±0.022
Energy efficiency 0.224±0.026/0.216±0.016 0.216±0.015/0.244±0.018 0.181±0.015/0.057±0.012
Red wine quality 0.174±0.023/0.161±0.020 0.168±0.020/0.159±0.019 0.124±0.013/0.052±0.013
White wine quality 0.153±0.017/0.142±0.015 0.144±0.013/0.136±0.015 0.104±0.011/0.031±0.012
Beijing PM2.5 data 0.254±0.057/0.243±0.055 0.241±0.052/0.226±0.043 0.173±0.046/0.026±0.052
PPPTS 0.254±0.052/0.249±0.031 0.236±0.053/0.219±0.054 0.194±0.045/0.057±0.034

5.3. Performance evaluation

In order to evaluate the performance of the IWFFS, we used four other feature selection algorithms comprising WF-
SIBC, IFNRS, OMVFS, and FSDS to compare the features obtained using the two classifiers (CMAR and C4.5) and 
two regression model (BP and SVR). As shown in Fig. 4, except for the SD data set, the number of features obtained 
using the IWFFS algorithm was much lower than the number of original features but also less than those obtained by 
the other feature selection algorithms. This is because the IWFFS algorithm considers the mutual information shared 
between the input fuzzy features and the output feature as well as the mutual information shared between the input 
fuzzy features to obtain the optimal fuzzy features subset.

Based on the features obtained, IWFFS was compared with WFSIBC and IFNRS according to the classification 
performance with the CMAR and C4.5 classifiers. Similarly, we compared IWFFS with OMVFS and FSDS according 
to the regression prediction performance with the BP neural network and SVR. As shown in Tables 4 and 5, except 
for the SD data set, the fuzzy features subsets obtained using IWFFS exhibited the best classification performance 
with the CMAR classifier, but also the best regression prediction performance with SVR. All of the experiments were 
conducted based on 20 random permutations and the results were obtained by averaging over all 20 runs.

In addition, the run times (s) for different algorithms are shown in Fig. 5. As expected, the time costs were less 
for the IWFFS algorithm than those for the other four feature selection algorithms because the weight gradients were 
employed by the IWFFS algorithm to reduce the search space for the optimal fuzzy features subset. Among all of the 
feature selection algorithms, the IWFFS algorithm had the longest run time for the SD data set but the shortest run 
time for the Wine data set. Thus, we conclude that the run time of the IWFFS algorithm is longer when the number of 
original fuzzy features is higher.
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Fig. 4. Comparison of the fuzzy features obtained by different algorithms based on different data sets.

Table 4
Cumulative classification accuracy (ACC) with the 95% confidence interval for different algorithms.

Data set Original features WFSIBC IFNRS IWFFS
(CMAR/C4.5) (CMAR/C4.5) (CMAR/C4.5) (CMAR/C4.5)

SD 0.906±0.005/0.912±0.005 0.906±0.005/0.912±0.005 0.906±0.054/0.912±0.005 0.906±0.005/0.912±0.005
BCH 0.921±0.022/0.925±0.048 0.940±0.037/0.945±0.039 0.936±0.035/0.938±0.037 0.947±0.030/0.958±0.030
Glass 0.932±0.027/0.906±0.026 0.951±0.026/0.9581±0.028 0.945±0.027/0.949±0.024 0.962±0.015/0.967±0.022
Liver 0.916±0.020/0.896±0.020 0.932±0.020/0.933±0.020 0.928±0.026/0.931±0.025 0.952±0.015/0.948±0.015
Wine 0.925±0.016/0.913±0.019 0.939±0.020/0.936±0.020 0.938±0.013/0.932±0.014 0.957±0.008/0.969±0.008
Yeast 0.915±0.023/0.924±0.024 0.943±0.020/0.946±0.020 0.928±0.018/0.935±0.018 0.960±0.015/0.974±0.015
SEA 0.923±0.025/0.909±0.025 0.956±0.020/0.961±0.020 0.944±0.026/0.925±0.023 0.983±0.022/0.989±0.023
Weather 0.919±0.037/0.918±0.039 0.945±0.030/0.943±0.030 0.936±0.038/0.928±0.034 0.948±0.036/0.957±0.036
svmguide3 0.934±0.033/0.941±0.033 0.942±0.032/0.944±0.034 0.957±0.035/0.965±0.036 0.975±0.033/0.982±0.033

Table 5
Cumulative prediction accuracy (MAPE) with the 95% confidence interval for different algorithms.

Data set Original OMVFS FSDS IWFFS
(BP/SVR) (BP/SVR) (BP/SVR) (BP/SVR)

Airfoil Self-Noise 0.248±0.039/0.075±0.035 0.183±0.037/0.055±0.026 0.209±0.038/0.062±0.034 0.141±0.033/0.042±0.033
Concrete_Data 0.224±0.027/0.094±0.026 0.194±0.023/0.042±0.025 0.217±0.022/0.051±0.019 0.116±0.022/0.033±0.022
Energy efficiency 0.235±0.023/0.096±0.025 0.204±0.022/0.065±0.017 0.218±0.020/0.072±0.020 0.181±0.015/0.057±0.012
Red wine quality 0.232±0.020/0.104±0.027 0.181±0.022/0.067±0.028 0.205±0.022/0.069±0.019 0.124±0.013/0.052±0.013
White wine quality 0.206±0.020/0.087±0.020 0.192±0.024/0.064±0.018 0.186±0.022/0.068±0.029 0.104±0.011/0.031±0.012
Beijing PM2.5 data 0.311±0.057/0.076±0.055 0.254±0.055/0.054±0.057 0.264±0.053/0.065±0.029 0.173±0.046/0.026±0.052
PPPTS 0.341±0.047/0.106±0.048 0.272±0.046/0.074±0.034 0.295±0.052/0.086±0.039 0.194±0.045/0.057±0.034

5.4. Analysis of variable weights

We analyzed the effects of the variable weights for different features on the classifier. The SEA data set was 
partitioned using five windows where each window contained 10000 samples. As shown in Fig. 6, the weights of the 
fuzzy features X̃11, X̃22, and X̃33 decreased continuously. In the 4th sliding window, the weights of the three fuzzy 
features were lowest and they had almost no effect on the output features, but the weights of fuzzy features X̃13, X̃21, 
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Fig. 5. Comparison of the run times with different algorithms.

and X̃31 then increased continuously to reach their maximum values. For all of the windows, the weights of fuzzy 
feature X̃23, and X̃33 decreased initially and then increased gradually. In the 0th and 4th sliding windows, the weights 
for fuzzy features X̃23 and X̃34 changed little.

According to the order of X̃11, X̃13, X̃21, X̃22, X̃23, X̃31, X̃33, and X̃34, the fuzzy features were ignored in se-
quence from the initial fuzzy features set, before the classification performance was compared when each feature 
was removed and after the feature was restored, as shown in Fig. 7. Fig. 6 shows that the weights of fuzzy features 
X̃11, X̃22, and X̃33 decreased continuously, and these features had increasingly weaker effects on the ACC. There-
fore, in the 4th sliding window, the ACC with the feature removed was similar to that with the feature restored. By 
contrast, the weights of fuzzy features X̃13, X̃21, and X̃31 increased continuously, so their effects on the ACC became 
increasingly important. In the 4th sliding window, the difference in ACC when the feature was removed and when the 
feature was restored was the largest according to Fig. 7. In addition, the weights of fuzzy features X̃23 and X̃34 de-
creased initially and then increased gradually, so their effect son the ACC increased at the beginning before decreasing 
gradually.

We also analyzed the effects of the variable weights of different features on the regression model. The PPPTS 
data set was partitioned using eight windows where each window contained 6000 samples. The weights of some of 
the fuzzy features in the PPPTS data set are shown in Fig. 8. The weights of fuzzy input features X̃12, X̃23, X̃61, 
X̃83, and X̃91 tended to decrease, whereas the weights of fuzzy input features X̃31, X̃53, X̃72, and X̃74 tended to 
increase, while the weight of fuzzy input feature X̃42 increased initially and then declined gradually. These fuzzy 
features were then each ignored among the initial fuzzy input features. The prediction performance was compared 
with each feature removed and when the feature was restored, as shown in Fig. 9. The weights of fuzzy features 
X̃12, X̃23, X̃61, X̃83, and X̃91 decreased continuously, so these features had increasingly weaker effects on the pre-
diction accuracy. In the 7th sliding window, the prediction accuracy when each feature was removed was similar to 
that when the feature was restored. By contrast, fuzzy input features X̃31, X̃53, X̃72, and X̃74 had increasingly im-
portant effects on the prediction accuracy because their weights increased so the difference in the prediction accuracy 
was larger when each feature was removed and restored. The weight of fuzzy input feature X̃42 increased initially 
and then decreased gradually, so its effect on the prediction accuracy decreased at the beginning and then increased 
gradually.



JID:FSS AID:7524 /FLA [m3SC+; v1.290; Prn:23/11/2018; 15:42] P.15 (1-19)

L. Wang et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 15
Fig. 6. Variable weights for some fuzzy features in the SEA data set.

Using the IWFFS algorithm, the optimal fuzzy features subset is obtained without requiring any parameters. The 
dependencies between the features are calculated using the mutual information irrespective of whether they are linear 
or nonlinear relationships, and thus the classification and prediction accuracy are improved during feature selection. In 
the offline fuzzy features selection algorithm, the weights of the fuzzy features are considered to obtain the candidate 
fuzzy features subset. The backward feature selection algorithm is employed to obtain the optimal fuzzy features 
subset, which reduces the run time and increases the efficiency. In the online fuzzy features selection algorithm, the 
intersection between the candidate fuzzy features subset in the current window and previous feature selection results 
is treated as the initial optimal fuzzy features subset for the current window, and the final optimal fuzzy features subset 
is obtained based on the importance levels of the fuzzy input features in the initial optimal fuzzy features subset. The 
evolving trends in the fuzzy input features are analyzed between different windows to identify the effects of the fuzzy 
features on the classification and regression prediction accuracy.
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Fig. 7. Effects on the classification accuracy of ignoring some fuzzy features in the SEA data set.

6. Conclusion

In this study, we proposed the IWFFS algorithm, which mainly evaluates the importance levels of the fuzzy features 
according to the weights of the fuzzy features in the current window. In the offline fuzzy features selection stage, 
the optimal fuzzy input features subset is obtained by the backward features selection algorithm and fuzzy features 
selection index. In the online fuzzy features selection stage, based on the candidate fuzzy features subset in the current 
sliding window and the optimal fuzzy feature subset in the previous sliding window, the optimal fuzzy features subset 
in the current sliding window is obtained according to the importance levels of the fuzzy features. The evolving trends 
in the fuzzy input features are analyzed between sliding windows to identify the effects of the fuzzy features on the 
ACC and prediction accuracy. Our simulation results showed that the proposed algorithm significantly improved the 
adaptability and prediction accuracy compared with existing methods.
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Fig. 8. Effects on the prediction accuracy of ignoring some fuzzy features in the PPPTS data set.



JID:FSS AID:7524 /FLA [m3SC+; v1.290; Prn:23/11/2018; 15:42] P.18 (1-19)

18 L. Wang et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 9. Effects on the prediction accuracy of ignoring some fuzzy features in the PPPTS data set.
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The main contribution of this study is our demonstration that fuzzy features can be selected from dynamic data to 
make more useful decisions. However, some problems still need to be addressed. First, the size of the sliding window 
that varies with the distribution of the data must be investigated. Second, we will apply our proposed algorithm to 
other domains to solve more complex problems.
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